Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Martins, Pedro Antonio Muniz"'
The set $S(n)$ of all elementary symmetric polynomials in $n$ variables is a minimal generating set for the algebra of symmetric polynomials in $n$ variables, but over a finite field ${\mathbb F}_q$ the set $S(n)$ is not a minimal separating set for
Externí odkaz:
http://arxiv.org/abs/2401.03318
We described a minimal separating set for the algebra of $O(F_q)$-invariant polynomial functions of $m$-tuples of two-dimensional vectors over a finite field $F_q$.
Comment: 8 pages
Comment: 8 pages
Externí odkaz:
http://arxiv.org/abs/2310.00484
Autor:
Lopatin, Artem a, b, ⁎, Martins, Pedro Antonio Muniz a
Publikováno v:
In Linear Algebra and Its Applications 1 July 2024 692:71-83