Zobrazeno 1 - 10
of 103
pro vyhledávání: '"Martinovic Jan"'
Publikováno v:
Nonlinear Engineering, Vol 13, Iss 1, Pp 2183-95 (2024)
Shallow water waves represent a significant and extensively employed wave type in coastal regions. The unconventional bidirectional transmission of extended waves across shallow water is elucidated through nonlinear fractional partial differential eq
Externí odkaz:
https://doaj.org/article/b050bebe663747afac234a851512347c
Autor:
Pilato, Christian, Banik, Subhadeep, Beranek, Jakub, Brocheton, Fabien, Castrillon, Jeronimo, Cevasco, Riccardo, Cmar, Radim, Curzel, Serena, Ferrandi, Fabrizio, Friebel, Karl F. A., Galizia, Antonella, Grasso, Matteo, Silva, Paulo, Martinovic, Jan, Palermo, Gianluca, Paolino, Michele, Parodi, Andrea, Parodi, Antonio, Pintus, Fabio, Polig, Raphael, Poulet, David, Regazzoni, Francesco, Ringlein, Burkhard, Rocco, Roberto, Slaninova, Katerina, Slooff, Tom, Soldavini, Stephanie, Suchert, Felix, Tibaldi, Mattia, Weiss, Beat, Hagleitner, Christoph
Modern big data workflows are characterized by computationally intensive kernels. The simulated results are often combined with knowledge extracted from AI models to ultimately support decision-making. These energy-hungry workflows are increasingly e
Externí odkaz:
http://arxiv.org/abs/2402.12612
Autor:
Palermo, Gianluca, Accordi, Gianmarco, Gadioli, Davide, Vitali, Emanuele, Silvano, Cristina, Guindani, Bruno, Ardagna, Danilo, Beccari, Andrea R., Bonanni, Domenico, Talarico, Carmine, Lunghini, Filippo, Martinovic, Jan, Silva, Paulo, Bohm, Ada, Beranek, Jakub, Krenek, Jan, Jansik, Branislav, Crisci, Luigi, Biagio, Cosenza, Thoman, Peter, Salzmann, Philip, Fahringer, Thomas, Alexander, Leila, Tauriello, Gerardo, Schwede, Torsten, Durairaj, Janani, Emerson, Andrew, Ficarelli, Federico, Wingbermuhle, Sebastian, Lindahl, Eric, Gregori, Daniele, Sana, Emanuele, Coletti, Silvano, Gschwandtner, Philip
Today digital revolution is having a dramatic impact on the pharmaceutical industry and the entire healthcare system. The implementation of machine learning, extreme-scale computer simulations, and big data analytics in the drug design and developmen
Externí odkaz:
http://arxiv.org/abs/2304.09953
Autor:
Praks, Pavel a, Rasmussen, Atgeirr b, Lye, Kjetil Olsen b, Martinovič, Jan a, Praksová, Renata a, Watson, Francesca b, Brkić, Dejan a, c, ⁎
Publikováno v:
In Heliyon 30 November 2024 10(22)
Autor:
Pilato, Christian, Bohm, Stanislav, Brocheton, Fabien, Castrillon, Jeronimo, Cevasco, Riccardo, Cima, Vojtech, Cmar, Radim, Diamantopoulos, Dionysios, Ferrandi, Fabrizio, Martinovic, Jan, Palermo, Gianluca, Paolino, Michele, Parodi, Antonio, Pittaluga, Lorenzo, Raho, Daniel, Regazzoni, Francesco, Slaninova, Katerina, Hagleitner, Christoph
High-Performance Big Data Analytics (HPDA) applications are characterized by huge volumes of distributed and heterogeneous data that require efficient computation for knowledge extraction and decision making. Designers are moving towards a tight inte
Externí odkaz:
http://arxiv.org/abs/2103.04185
Publikováno v:
In Results in Physics February 2024 57
Autor:
Gadioli, Davide, Accordi, Gianmarco, Krenek, Jan, Golasowski, Martin, Foltyn, Ladislav, Martinovic, Jan, Beccari, Andrea R., Palermo, Gianluca
Publikováno v:
In Procedia Computer Science 2024 240:42-51
Autor:
Colonnelli, Iacopo, Birke, Robert, Malenza, Giulio, Mittone, Gianluca, Mulone, Alberto, Galjaard, Jeroen, Chen, Lydia Y., Bassini, Sanzio, Scipione, Gabriella, Martinovič, Jan, Vondrák, Vit, Aldinucci, Marco
Publikováno v:
In Procedia Computer Science 2024 240:3-12
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Vitali, Emanuele, Gadioli, Davide, Palermo, Gianluca, Golasowski, Martin, Bispo, Joao, Pinto, Pedro, Martinovic, Jan, Slaninova, Katerina, Cardoso, Joao M. P., Silvano, Cristina
Incorporating speed probability distribution to the computation of the route planning in car navigation systems guarantees more accurate and precise responses. In this paper, we propose a novel approach for dynamically selecting the number of samples
Externí odkaz:
http://arxiv.org/abs/1901.06210