Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Martinez, Abel Cabrera"'
For a given graph $G$ without isolated vertex we consider a function $f: V(G) \rightarrow \{0,1,2\}$. For every $i\in \{0,1,2\}$, let $V_i=\{v\in V(G):\; f(v)=i\}$. The function $f$ is known to be an outer-independent total Roman dominating function
Externí odkaz:
http://arxiv.org/abs/2112.05476
Let $G$ be a graph with vertex set $V(G)$. A function $f:V(G)\rightarrow \{0,1,2\}$ is a Roman dominating function on $G$ if every vertex $v\in V(G)$ for which $f(v)=0$ is adjacent to at least one vertex $u\in V(G)$ such that $f(u)=2$. The Roman domi
Externí odkaz:
http://arxiv.org/abs/2105.10006
Let $w=(w_0,w_1, \dots,w_l)$ be a vector of nonnegative integers such that $ w_0\ge 1$. Let $G$ be a graph and $N(v)$ the open neighbourhood of $v\in V(G)$. We say that a function $f: V(G)\longrightarrow \{0,1,\dots ,l\}$ is a $w$-dominating function
Externí odkaz:
http://arxiv.org/abs/2105.05199
Autor:
Martinez, Abel Cabrera
In a graph $G$, a vertex dominates itself and its neighbours. A set $D\subseteq V(G)$ is said to be a $k$-tuple dominating set of $G$ if $D$ dominates every vertex of $G$ at least $k$ times. The minimum cardinality among all $k$-tuple dominating sets
Externí odkaz:
http://arxiv.org/abs/2104.03172
Recently, Haynes, Hedetniemi and Henning published the book Topics in Domination in Graphs, which comprises 16 contributions that present advanced topics in graph domination, featuring open problems, modern techniques, and recent results. One of thes
Externí odkaz:
http://arxiv.org/abs/2102.10584
Given a graph $G=(V,E)$, a function $f:V\rightarrow \{0,1,2\}$ is a total Roman $\{2\}$-dominating function if: (1) every vertex $v\in V$ for which $f(v)=0$ satisfies that $\sum_{u\in N(v)}f(u)\geq 2$, where $N(v)$ represents the open neighborhood of
Externí odkaz:
http://arxiv.org/abs/2101.02537
Given a graph $G$ without isolated vertices, a total Roman dominating function for $G$ is a function $f : V(G)\rightarrow \{0,1,2\}$ such that every vertex with label 0 is adjacent to a vertex with label 2, and the set of vertices with positive label
Externí odkaz:
http://arxiv.org/abs/2005.13608
Publikováno v:
Ars Combinatoria (2020)
A set $D$ of vertices of a graph $G$ is a total dominating set if every vertex of $G$ is adjacent to at least one vertex of $D$. The total domination number of $G$ is the minimum cardinality of any total dominating set of $G$ and is denoted by $\gamm
Externí odkaz:
http://arxiv.org/abs/2005.02185
A subset $D$ of vertices of a graph $G$ is a total dominating set if every vertex of $G$ is adjacent to at least one vertex of $D$. The total dominating set $D$ is called a total co-independent dominating set if the subgraph induced by $V-D$ is edgel
Externí odkaz:
http://arxiv.org/abs/1705.01036
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.