Zobrazeno 1 - 10
of 137
pro vyhledávání: '"Martinez, Abel"'
For a given graph $G$ without isolated vertex we consider a function $f: V(G) \rightarrow \{0,1,2\}$. For every $i\in \{0,1,2\}$, let $V_i=\{v\in V(G):\; f(v)=i\}$. The function $f$ is known to be an outer-independent total Roman dominating function
Externí odkaz:
http://arxiv.org/abs/2112.05476
Autor:
Fernández-Fidalgo, Javier, Cueto-Felgueroso, Luis, Ramírez, Luis, Martínez, Abel, Nogueira, Xesús
Publikováno v:
In Computer Methods in Applied Mechanics and Engineering 1 August 2024 428
Let $G$ be a graph with vertex set $V(G)$. A function $f:V(G)\rightarrow \{0,1,2\}$ is a Roman dominating function on $G$ if every vertex $v\in V(G)$ for which $f(v)=0$ is adjacent to at least one vertex $u\in V(G)$ such that $f(u)=2$. The Roman domi
Externí odkaz:
http://arxiv.org/abs/2105.10006
Let $w=(w_0,w_1, \dots,w_l)$ be a vector of nonnegative integers such that $ w_0\ge 1$. Let $G$ be a graph and $N(v)$ the open neighbourhood of $v\in V(G)$. We say that a function $f: V(G)\longrightarrow \{0,1,\dots ,l\}$ is a $w$-dominating function
Externí odkaz:
http://arxiv.org/abs/2105.05199
Autor:
Martinez, Abel Cabrera
In a graph $G$, a vertex dominates itself and its neighbours. A set $D\subseteq V(G)$ is said to be a $k$-tuple dominating set of $G$ if $D$ dominates every vertex of $G$ at least $k$ times. The minimum cardinality among all $k$-tuple dominating sets
Externí odkaz:
http://arxiv.org/abs/2104.03172
Recently, Haynes, Hedetniemi and Henning published the book Topics in Domination in Graphs, which comprises 16 contributions that present advanced topics in graph domination, featuring open problems, modern techniques, and recent results. One of thes
Externí odkaz:
http://arxiv.org/abs/2102.10584
Given a graph $G=(V,E)$, a function $f:V\rightarrow \{0,1,2\}$ is a total Roman $\{2\}$-dominating function if: (1) every vertex $v\in V$ for which $f(v)=0$ satisfies that $\sum_{u\in N(v)}f(u)\geq 2$, where $N(v)$ represents the open neighborhood of
Externí odkaz:
http://arxiv.org/abs/2101.02537
Autor:
Barkanov, Egor, Penalba, Markel, Martinez, Abel, Martinez-Perurena, Ander, Zarketa-Astigarraga, Ander, Iglesias, Gregorio
Publikováno v:
In Energy Conversion and Management 1 February 2024 301
Autor:
Gonzalez-Arceo, Andoni, Blanco-Aguilera, Ricardo, Berasategi, Joanes, Martinez-Agirre, Manex, Martinez, Abel, Iglesias, Gregorio, Penalba, Markel
Publikováno v:
In Energy Conversion and Management 15 January 2024 300
Given a graph $G$ without isolated vertices, a total Roman dominating function for $G$ is a function $f : V(G)\rightarrow \{0,1,2\}$ such that every vertex with label 0 is adjacent to a vertex with label 2, and the set of vertices with positive label
Externí odkaz:
http://arxiv.org/abs/2005.13608