Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Martinengo, Elena"'
Autor:
Iacono, Donatella, Martinengo, Elena
We analyse infinitesimal deformations of morphisms of locally free sheaves on a smooth projective variety $X$ over an algebraically closed field of characteristic zero. In particular, we describe a differential graded Lie algebra controlling the defo
Externí odkaz:
http://arxiv.org/abs/2312.09677
Autor:
Iacono, Donatella, Martinengo, Elena
We study the functor $\operatorname{Def}_E^k$ of infinitesimal deformations of a locally free sheaf $E$ of $\mathcal{O}_X$-modules on a smooth variety $X$, such that at least $k$ independent sections lift to the deformed sheaf, where $h^0(E) \geq k$.
Externí odkaz:
http://arxiv.org/abs/2207.13935
Publikováno v:
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 24(4): 2323-2349, 2023
We give a proper definition of the multiplicative structure of the following rings: the Cox ring of invertible sheaves on a general algebraic stack; and the Cox ring of rank one reflexive sheaves on a normal and excellent algebraic stack. We show tha
Externí odkaz:
http://arxiv.org/abs/2004.01445
Autor:
Martinengo, Elena
We study equivariant bi-vector fields on a toric variety. We prove that, on a smooth toric variety of dimension $n$, the locus where the rank of an equivariant bi-vector field is $\leq 2k$ is not empty and has at least a component of dimension $\geq
Externí odkaz:
http://arxiv.org/abs/1905.00246
Publikováno v:
Journal of Pure and Applied Algebra 222(6): 1287-1305, 2018
Given a map $\phi: X \to Y$ of $\mathbb Q$-factorial Mori dream spaces, one can ask whether this map is induced by a homogeneous homomorphism $R(Y) \to R(X)$ of Cox rings. As soon as $Y$ is singular, such a homomorphism needs not to exist, as pulling
Externí odkaz:
http://arxiv.org/abs/1605.06789
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Mathematische Zeitschrift 280(3-4): 1185-1202, 2015
We propose a generalisation of Mori dream spaces to stacks. We show that this notion is preserved under root constructions and taking abelian gerbes. Unlike the case of Mori dream spaces, such a stack is not always given as a quotient of the spectrum
Externí odkaz:
http://arxiv.org/abs/1403.7984
Autor:
Martinengo, Elena
We identify dglas that control infinitesimal deformations of the pairs (manifold, Higgs bundle) and of Hitchin pairs. As a consequence, we recover known descriptions of first order deformations and we refine known results on obstructions. Secondly we
Externí odkaz:
http://arxiv.org/abs/1003.5531
Autor:
Fiorenza, Domenico, Martinengo, Elena
Publikováno v:
Publications of the nLab, Volume 2, no.1 (2012), pp. 1-13
A common criticism of infinity-categories in algebraic geometry is that they are an extremely technical subject, so abstract to be useless in everyday mathematics. The aim of this note is to show in a classical example that quite the converse is true
Externí odkaz:
http://arxiv.org/abs/0911.3845
Publikováno v:
J. Eur. Math. Soc. (JEMS) 14 (2012), no. 2, 521-540
We use the Thom-Whitney construction to show that infinitesimal deformations of a coherent sheaf F are controlled by the differential graded Lie algebra of global sections of an acyclic resolution of the sheaf End(E), where E is any locally free reso
Externí odkaz:
http://arxiv.org/abs/0904.1301