Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Martine Picavet-L'Hermitte"'
Publikováno v:
Arabian Journal of Mathematics, Vol 7, Iss 4, Pp 249-271 (2018)
Externí odkaz:
https://doaj.org/article/7f4d6eef5f844ea681defa21a15a5147
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2014 (2014)
Let R⊂S be an extension of commutative rings, with X an indeterminate, such that the extension RX⊂SX of Nagata rings has FIP (i.e., SX has only finitely many RX-subalgebras). Then, the number of RX-subalgebras of SX equals the number of R-subalge
Externí odkaz:
https://doaj.org/article/7de03826e3414486baef63160ebb7632
Publikováno v:
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry.
Publikováno v:
Volume: 29, Issue: 29 15-49
International Electronic Journal of Algebra
International Electronic Journal of Algebra
If $R\subseteq S$ is an extension of commutative rings, we consider the lattice $([R,S],\subseteq)$ of all the $R$-subalgebras of $S$. We assume that the poset $[R,S]$ is both Artinian and Noetherian; that is, $R\subseteq S$ is an FCP extension. The
Publikováno v:
Communications in Algebra
Communications in Algebra, Taylor & Francis, 2020, 48 (5), pp.1821-1852. ⟨10.1080/00927872.2019.1708088⟩
Communications in Algebra, 2020, 48 (5), pp.1821-1852. ⟨10.1080/00927872.2019.1708088⟩
Communications in Algebra, Taylor & Francis, 2020, 48 (5), pp.1821-1852. ⟨10.1080/00927872.2019.1708088⟩
Communications in Algebra, 2020, 48 (5), pp.1821-1852. ⟨10.1080/00927872.2019.1708088⟩
We characterize extensions of commutative rings $R \subseteq S$ whose sets of subextensions $[R,S]$ are finite ({\it i.e.} $R\subseteq S$ has the FIP property) and are Boolean lattices, that we call Boolean FIP extensions. Some characterizations invo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0d2cdd647519e0cc1c44eaed43ac95bf
https://hal.archives-ouvertes.fr/hal-02982795
https://hal.archives-ouvertes.fr/hal-02982795
Publikováno v:
Arabian Journal of Mathematics, Vol 7, Iss 4, Pp 249-271 (2018)
We characterize pointwise minimal extensions of rings, introduced by Cahen et al. (Rocky Mt J Math 41:1081–1125, 2011), in the special context of domains. We show that pointwise minimal extensions are either integral or integrally closed. In the cl
We consider ring extensions, whose set of all subextensions is stable under the formation of sums, the so-called $$\Delta $$ Δ -extensions. An integrally closed extension has the $$\Delta $$ Δ -property if and only it is a Prüfer extension. We the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::471701ba28d035cc9c7216010214fb1e
Publikováno v:
Bollettino dell'Unione Matematica Italiana. 10:549-573
We study etale extensions of rings that have FIP.
Comment: The paper entitled FIP and FCP products of ring morphisms (arXiv: 1312.1250 [math.AC]) is now split into three papers. The present paper contains the last section of the original paper a
Comment: The paper entitled FIP and FCP products of ring morphisms (arXiv: 1312.1250 [math.AC]) is now split into three papers. The present paper contains the last section of the original paper a
Publikováno v:
Volume: 28, Issue: 28 229-229
International Electronic Journal of Algebra
International Electronic Journal of Algebra
of the paper: "G. Picavet and M. Picavet-L'Hermitte, Modules with finitely many submodules, Int. Electron. J. Algebra, 19 (2016), 119-131.":We characterize ring extensions $R \subset S$ having FCP (FIP), where $S$ is the idealization of some $R$-modu
Publikováno v:
Communications in Algebra. 43:1279-1316
For an extension E: R ⊂ S of (commutative) rings and the induced extension F: R(X) ⊂ S(X) of Nagata rings, the transfer of the FCP and FIP properties between E and F is studied. Then F has FCP ⇔ E has FCP. The extensions E for which F has FIP a