Zobrazeno 1 - 10
of 87
pro vyhledávání: '"Martina Zähle"'
Autor:
Martina Zähle
Publikováno v:
Mathematics, Vol 8, Iss 6, p 883 (2020)
Homogeneous random fractals form a probabilistic generalisation of self-similar sets with more dependencies than in random recursive constructions. Under the Uniform Strong Open Set Condition we show that the mean D-dimensional (average) Minkowski co
Externí odkaz:
https://doaj.org/article/c48c3ffc4a334e6280dd5c848021c253
Autor:
Erik Schneider, Martina Zähle
Publikováno v:
Horizons of Fractal Geometry and Complex Dimensions. :279-302
Autor:
Martina Zaehle
This book is based on a series of lectures at the Mathematics Department of the University of Jena, developed in the period from 1995 up to 2015. It is completed by additional material and extensions of some basic results from the literature to more
Autor:
Martina Zähle, Jan Rataj
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030181826
So far we have introduced curvature measures for sets with positive reach and their locally finite unions (such that any finite intersection has positive reach). This setting is still not satisfactory since it does not encompass some natural set clas
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7c05430529144e454ceb9d8dae1af206
https://doi.org/10.1007/978-3-030-18183-3_9
https://doi.org/10.1007/978-3-030-18183-3_9
Autor:
Jan Rataj, Martina Zähle
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030181826
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d3db186d71635769c61a3e51a1c56fa1
https://doi.org/10.1007/978-3-030-18183-3_8
https://doi.org/10.1007/978-3-030-18183-3_8
Autor:
Jan Rataj, Martina Zähle
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030181826
There exist close analogues to the curvature measures for convex bodies in classical differential geometry of smooth submanifolds. Basic notions have been developed nearly at the same time starting from the 1930th, mainly within the so-called integra
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3cb4372741eefff9371f83102b61fdef
https://doi.org/10.1007/978-3-030-18183-3_3
https://doi.org/10.1007/978-3-030-18183-3_3
Autor:
Martina Zähle, Jan Rataj
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030181826
Recall that the curvature measures Ck(Xr, ⋅) of the r-parallel sets to a set X with positive reach converge vaguely to those of X itself (see Corollary 4.35). This stability result motivates a natural question whether curvature measures of more gen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f5dfbd59991646ffc0e81baa9ce797ba
https://doi.org/10.1007/978-3-030-18183-3_7
https://doi.org/10.1007/978-3-030-18183-3_7
Autor:
Martina Zähle, Jan Rataj
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030181826
Integral geometry, in general, is concerned with integrals of geometric characteristics with respect to invariant measures, usually under Euclidean motions. A classical and comprehensive reference to integral-geometric relations is the book of Santal
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6fd36d62404a25ef6f4a61a5ed1c0ff1
https://doi.org/10.1007/978-3-030-18183-3_6
https://doi.org/10.1007/978-3-030-18183-3_6
Autor:
Jan Rataj, Martina Zähle
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030181826
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6735594512c5bd4e2e1bfcd882f414ad
https://doi.org/10.1007/978-3-030-18183-3
https://doi.org/10.1007/978-3-030-18183-3
Autor:
Martina Zähle, Jan Rataj
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030181826
The metric projection to a set \(\emptyset \neq X\subset \mathbb {R}^d\) is not determined everywhere unless X is convex and closed. Sets with positive reach are sets with the property that the metric projection is defined on some open neighbourhood
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::41d3b3f4490dbc86676b6ece1adceadd
https://doi.org/10.1007/978-3-030-18183-3_4
https://doi.org/10.1007/978-3-030-18183-3_4