Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Martin de Borbon"'
Autor:
Martin de Borbon, Gregory Edwards
Publikováno v:
Commentarii Mathematici Helvetici. 96:113-148
We prove an interior Schauder estimate for the Laplacian on metric products of two dimensional cones with a Euclidean factor, generalizing the work of Donaldson and reproving the Schauder estimate of Guo-Song. We characterize the space of homogeneous
Autor:
Martin de Borbon, Eveline Legendre
Publikováno v:
Selecta Mathematica. 28
We show that any toric Kähler cone with smooth compact cross-section admits a family of Calabi–Yau cone metrics with conical singularities along its toric divisors. The family is parametrized by the Reeb cone and the angles are given explicitly in
Autor:
Martin de Borbon, Dmitri Panov
We use the Kobayashi-Hitchin correspondence for parabolic bundles to reprove the results of Troyanov and Luo-Tian regarding existence and uniqueness of conformal spherical metrics on the Riemann sphere with prescribed cone angles in the interval $(0,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dc49cce0cf5f778ce2274858fedb095a
http://arxiv.org/abs/2109.10250
http://arxiv.org/abs/2109.10250
Autor:
Martin de Borbon, Cristiano Spotti
Publikováno v:
Int.Math.Res.Not.
Int.Math.Res.Not., 2021, 2021 (2), pp.1198-1223. ⟨10.1093/imrn/rnz280⟩
De Borbon, M & Spotti, C 2021, ' Asymptotically conical Calabi-Yau metrics with cone singularities along a compact divisor ', International Mathematics Research Notices, vol. 2021, no. 2, pp. 1198-1223 . https://doi.org/10.1093/imrn/rnz280
Int.Math.Res.Not., 2021, 2021 (2), pp.1198-1223. ⟨10.1093/imrn/rnz280⟩
De Borbon, M & Spotti, C 2021, ' Asymptotically conical Calabi-Yau metrics with cone singularities along a compact divisor ', International Mathematics Research Notices, vol. 2021, no. 2, pp. 1198-1223 . https://doi.org/10.1093/imrn/rnz280
We construct Asymptotically Locally Euclidean (ALE) and, more generally, asymptotically conical Calabi–Yau metrics with cone singularities along a compact simple normal crossing divisor. In particular, this includes the case of the minimal resoluti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2bf8dc55be3fe2e1229bd2ba5c548d08
https://hal.archives-ouvertes.fr/hal-03150533
https://hal.archives-ouvertes.fr/hal-03150533
Autor:
Martin de Borbon, Gregory Edwards
We produce local Calabi-Yau metrics on $\mathbf C^2$ with conical singularities along three or more complex lines through the origin whose cone angles strictly violate the Troyanov condition. The tangent cone at the origin is a flat polyhedral K\"ahl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2f958f464158d10f04ee84ed2c9d7e86
http://arxiv.org/abs/2006.06065
http://arxiv.org/abs/2006.06065
Asymptotically conical Ricci-flat Kähler metrics on C2 with cone singularities along a complex curve
Autor:
Martin de Borbon
Publikováno v:
Journal of the London Mathematical Society. 96:425-454
Autor:
Martin de Borbon
Publikováno v:
Complex Manifolds, Vol 4, Iss 1, Pp 43-72 (2017)
We construct and classify, in the case of two complex dimensions, the possible tangent cones at points of limit spaces of non-collapsed sequences of K\"ahler-Einstein metrics with cone singularities.
Comment: Reference to Panov's Polyhedral Kahl
Comment: Reference to Panov's Polyhedral Kahl
Autor:
Martin de Borbon, Cristiano Spotti
Publikováno v:
Spotti, C & de Borbon, M 2019, ' Local models for conical Kähler-Einstein metrics ', Proceedings of the American Mathematical Society, vol. 147, no. 3, pp. 1217-1230 . https://doi.org/10.1090/proc/14302
In this note we use the Calabi ansatz, in the context of metrics with conical singularities along a divisor, to produce regular Calabi-Yau cones and K\"ahler-Einstein metrics of negative Ricci with a cuspidal point. As an application, we describe sin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::20a5f49b7fc1efee028f1e7cbab23c93
https://pure.au.dk/portal/da/publications/local-models-for-conical-kahlereinstein-metrics(6b743101-ee73-417c-a6fc-a934dd8d46ab).html
https://pure.au.dk/portal/da/publications/local-models-for-conical-kahlereinstein-metrics(6b743101-ee73-417c-a6fc-a934dd8d46ab).html
Autor:
Cristiano Spotti, Martin de Borbon
Publikováno v:
Aarhus University
Given a weighted line arrangement in the projective plane, with weights satisfying natural constraint conditions, we show the existence of a Ricci-flat K\"ahler metric with cone singularities along the lines asymptotic to a polyhedral K\"ahler cone a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bec5ac2ad6fd5c6e865a9e2be17dee53
http://arxiv.org/abs/1712.07967
http://arxiv.org/abs/1712.07967
Autor:
Martin de Borbon
We discuss the Ricci-flat `model metrics' on $\mathbb{C}^2$ with cone singularities along the conic $\{zw=1\}$ constructed by Donaldson using the Gibbons-Hawking ansatz over wedges in $\mathbb{R}^3$. In particular we describe their asymptotic behavio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eeb19a5933e8012066bb36ca7a4a70ec
http://arxiv.org/abs/1701.06471
http://arxiv.org/abs/1701.06471