Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Martin W Skjerbæk"'
Autor:
Tina D. Kristensen, Jayachandra M. Raghava, Martin W. Skjerbæk, Thijs Dhollander, Warda Syeda, Karen S. Ambrosen, Kirsten B. Bojesen, Mette Ø. Nielsen, Christos Pantelis, Birte Y. Glenthøj, Bjørn H. Ebdrup
Publikováno v:
European Archives of Psychiatry and Clinical Neuroscience.
Multiple lines of research support the dysconnectivity hypothesis of schizophrenia. However, findings on white matter (WM) alterations in patients with schizophrenia are widespread and non-specific. Confounding factors from magnetic resonance image (
Autor:
Anders N Myken, Bjørn H Ebdrup, Mikkel E Sørensen, Brian V Broberg, Martin W Skjerbæk, Birte Y Glenthøj, Jens Lykkesfeldt, Mette Ø Nielsen
Publikováno v:
Myken, A N, Ebdrup, B H, Sørensen, M E, Broberg, B V, Skjerbæk, M W, Glenthøj, B Y, Lykkesfeldt, J & Nielsen, M 2022, ' Lower Vitamin C Levels Are Associated With Less Improvement in Negative Symptoms in Initially Antipsychotic-Naïve Patients With First-Episode Psychosis ', The international journal of neuropsychopharmacology, vol. 25, no. 8, pp. 613-618 . https://doi.org/10.1093/ijnp/pyac029
Low levels of vitamin C have been observed in patients with schizophrenia and psychosis, and vitamin C may affect the dopaminergic system. Likewise, antipsychotic medication modulates striatal dopamine D2 receptors. We measured vitamin C levels in 52
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::30207d912bfe73e6fa26dd1d2ddfcba9
https://curis.ku.dk/portal/da/publications/lower-vitamin-c-levels-are-associated-with-less-improvement-in-negative-symptoms-in-initially-antipsychoticnaive-patients-with-firstepisode-psychosis(be76dbd1-617e-47d7-bfc0-f721d90b7ac5).html
https://curis.ku.dk/portal/da/publications/lower-vitamin-c-levels-are-associated-with-less-improvement-in-negative-symptoms-in-initially-antipsychoticnaive-patients-with-firstepisode-psychosis(be76dbd1-617e-47d7-bfc0-f721d90b7ac5).html
Autor:
Egill Rostrup, Martin W Skjerbæk, Birgitte Fagerlund, Christos Pantelis, Martin Christian Axelsen, Jonathan Foldager, Merete Osler, Louise Baruël Johansen, Mette Ødegaard Nielsen, Søren Christensen, Lars Arvastson, Lars Kai Hansen, Bjørn H Ebdrup, Bob Oranje, Jayachandra Mitta Raghava, Birte Glenthøj, Bruce J Kinon, Nikolaj Bak, Karen Sando Ambrosen
Publikováno v:
Translational Psychiatry, Vol 10, Iss 1, Pp 1-13 (2020)
Translational Psychiatry
Ambrosen, K S, Skjerbæk, M W, Foldager, J, Axelsen, M C, Bak, N, Arvastson, L, Christensen, S R, Johansen, L B, Raghava, J M, Oranje, B, Rostrup, E, Nielsen, M, Osler, M, Fagerlund, B, Pantelis, C, Kinon, B J, Glenthøj, B Y, Hansen, L K & Ebdrup, B H 2020, ' A machine-learning framework for robust and reliable prediction of short-and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data ', Translational Psychiatry, vol. 10, no. 1, 276 . https://doi.org/10.1038/s41398-020-00962-8
Ambrosen, K S, Skjerbæk, M W, Foldager, J, Axelsen, M C, Bak, N, Arvastson, L, Christensen, S R, Johansen, L B, Raghava, J M, Oranje, B, Rostrup, E, Nielsen, M, Osler, M, Fagerlund, B, Pantelis, C, Kinon, B J, Glenthøj, B Y, Hansen, L K & Ebdrup, B H 2020, ' A machine-learning framework for robust and reliable prediction of short-and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data ', Translational Psychiatry, vol. 10, no. 1, 276, pp. S34–S35 . https://doi.org/10.1038/s41398-020-00962-8
Translational Psychiatry
Ambrosen, K S, Skjerbæk, M W, Foldager, J, Axelsen, M C, Bak, N, Arvastson, L, Christensen, S R, Johansen, L B, Raghava, J M, Oranje, B, Rostrup, E, Nielsen, M, Osler, M, Fagerlund, B, Pantelis, C, Kinon, B J, Glenthøj, B Y, Hansen, L K & Ebdrup, B H 2020, ' A machine-learning framework for robust and reliable prediction of short-and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data ', Translational Psychiatry, vol. 10, no. 1, 276 . https://doi.org/10.1038/s41398-020-00962-8
Ambrosen, K S, Skjerbæk, M W, Foldager, J, Axelsen, M C, Bak, N, Arvastson, L, Christensen, S R, Johansen, L B, Raghava, J M, Oranje, B, Rostrup, E, Nielsen, M, Osler, M, Fagerlund, B, Pantelis, C, Kinon, B J, Glenthøj, B Y, Hansen, L K & Ebdrup, B H 2020, ' A machine-learning framework for robust and reliable prediction of short-and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data ', Translational Psychiatry, vol. 10, no. 1, 276, pp. S34–S35 . https://doi.org/10.1038/s41398-020-00962-8
The reproducibility of machine-learning analyses in computational psychiatry is a growing concern. In a multimodal neuropsychiatric dataset of antipsychotic-naïve, first-episode schizophrenia patients, we discuss a workflow aimed at reducing bias an
Autor:
Bjørn H Ebdrup, Lars K Hansen, Birte Y Glenthøj, Bruce J Kinon, Christos Pantelis, Birgitte Fagerlund, Merete Osler, Mette Ø Nielsen, Egill Rostrup, Bob Oranje, Jayachandra M Raghava, Louise B Johansen, Søren R Christensen, Lars Arvastson, Nikolaj Bak, Martin C Axelsen, Jonathan Foldager, Martin W Skjerbæk, Karen S Ambrosen
Publikováno v:
Schizophrenia Bulletin
Background The treatment response of patients with schizophrenia is heterogeneous, and markers of clinical response are missing. Studies using machine learning approaches have provided encouraging results regarding prediction of outcomes, but replica