Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Martin Ondreját"'
Publikováno v:
Journal of Differential Equations. 325:1-69
We consider stochastic wave map equation on real line with solutions taking values in a $d$-dimensional compact Riemannian manifold. We show first that this equation has unique, global, strong in PDE sense, solution in local Sobolev spaces. The main
Autor:
Petr Čoupek, Martin Ondreját
Publikováno v:
Potential Analysis.
In the article, Besov-Orlicz regularity of sample paths of stochastic processes that are represented by multiple integrals of order $n\in\mathbb{N}$ is treated. We give sufficient conditions for the considered processes to have paths in the exponenti
Publikováno v:
Stochastics and Partial Differential Equations: Analysis and Computations.
The numerical analysis of stochastic parabolic partial differential equations of the form $$\begin{aligned} du + A(u)\, dt = f \,dt + g \, dW, \end{aligned}$$ d u + A ( u ) d t = f d t + g d W , is surveyed, where A is a nonlinear partial operator an
Autor:
Jan Seidler, Martin Ondreját
Publikováno v:
Kybernetika. :888-907
Autor:
Mark Veraar, Martin Ondreját
Publikováno v:
Annales de l'Institut Henri Poincar. (B) Probabilites et Statistiques, 56(3)
Ann. Inst. H. Poincaré Probab. Statist. 56, no. 3 (2020), 1792-1808
Ann. Inst. H. Poincaré Probab. Statist. 56, no. 3 (2020), 1792-1808
We show that paths of solutions to parabolic stochastic differential equations have the same regularity in time as the Wiener process (as of the current state of art). The temporal regularity is considered in the Besov-Orlicz space $B^{1/2}_{\Phi_2,\
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::076114bca4dddf2a84771d01b724ec04
http://resolver.tudelft.nl/uuid:a1d7ea36-68cc-4bc9-b19d-730628000028
http://resolver.tudelft.nl/uuid:a1d7ea36-68cc-4bc9-b19d-730628000028
Publikováno v:
Stochastic Analysis and Applications. 36:1037-1052
The Besov–Orlicz space BΦ,∞1/2(0,T;Rd) with Φ(x)= exp(x2)−1 is currently the smallest known classical function space to which paths of the Wiener process belong almost surely. We consider s...
Publikováno v:
Nonlinear Differential Equations and Applications
Nonlinear Differential Equations and Applications, Springer Verlag, 2019, 26 (3), ⟨10.1007/s00030-019-0569-3⟩
Nonlinear Differential Equations and Applications, Springer Verlag, 2019, 26 (3), ⟨10.1007/s00030-019-0569-3⟩
In a recent paper by the first two authors, existence of martingale solutions to a stochastic nonlinear Schrodinger equation driven by a Levy noise was proved. In this paper, we prove pathwise uniqueness, uniqueness in law and existence of strong sol
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::769c3cd668ccb82e44bcc2dcc807ed24
https://hal.archives-ouvertes.fr/hal-02388375
https://hal.archives-ouvertes.fr/hal-02388375
Publikováno v:
Ann. Probab. 45, no. 5 (2017), 3145-3201
Building upon a recent work by two of the authors and J. Seidler on $bw$-Feller property for stochastic nonlinear beam and wave equations, we prove the existence of an invariant measure to stochastic 2-D Navier–Stokes (with multiplicative noise) eq
Space-time regularity of linear stochastic partial differential equations is studied. The solution is defined in the mild sense in the state space $L^p$. The corresponding regularity is obtained by showing that the stochastic convolution integrals ar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::daf07c5f2e0bdba8c20a2d2acee1c76f
http://arxiv.org/abs/1704.03307
http://arxiv.org/abs/1704.03307
Autor:
Mark Veraar, Martin Ondreját
Publikováno v:
Journal of Theoretical Probability. 27:1350-1374
In this paper we consider stochastic integration with respect to cylindrical Brownian motion in infinite-dimensional spaces. We study weak characterizations of stochastic integrability and present a natural continuation of results of van Neerven, Wei