Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Martin Deraux"'
Autor:
Martin Deraux, Mengmeng Xu
Publikováno v:
Transformation Groups
Transformation Groups, In press, ⟨10.1007/s00031-022-09783-z⟩
Transformation Groups, In press, ⟨10.1007/s00031-022-09783-z⟩
We present a systematic effective method to construct coarse fundamental domains for the action of the Picard modular groups $PU(2,1,\mathcal{O}_d)$ where $\mathcal{O}_d$ has class number one, i.e. $d=1,2,3,7,11,19,43,67,163$. The computations can be
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d8e0fa0f070d225e24e5a4a36a0680c0
Publikováno v:
Michigan Mathematical Journal
Michigan Mathematical Journal, University of Michigan, 2021, 70 (1), ⟨10.1307/mmj/1592532044⟩
Michigan mathematical journal, 2021, Vol.70(1), pp.133-205 [Peer Reviewed Journal]
Michigan Mathematical Journal, University of Michigan, 2021, 70 (1), ⟨10.1307/mmj/1592532044⟩
Michigan mathematical journal, 2021, Vol.70(1), pp.133-205 [Peer Reviewed Journal]
We describe a general procedure to produce fundamental domains for complex hyperbolic triangle groups. This allows us to produce new nonarithmetic lattices, bringing the number of known nonarithmetic commensurability classes in PU(2,1) to 22.
Autor:
Martin Deraux
Publikováno v:
Algebraic and Geometric Topology
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2020, 20 (2), pp.925-963. ⟨10.2140/agt.2020.20.925⟩
Algebr. Geom. Topol. 20, no. 2 (2020), 925-963
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2020, 20 (2), pp.925-963. ⟨10.2140/agt.2020.20.925⟩
Algebr. Geom. Topol. 20, no. 2 (2020), 925-963
We study the arithmeticity of the Couwenberg-Heckman-Looijenga lattices in PU(n,1), and show that they contain a non-arithmetic lattice in PU(3,1) which is not commensurable to the non-arithmetic Deligne-Mostow lattice in PU(3,1).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9ce9038b79d2d0ce5c26fa9177fb7630
https://hal.archives-ouvertes.fr/hal-02965313
https://hal.archives-ouvertes.fr/hal-02965313
Autor:
Martin Deraux
Publikováno v:
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society, American Mathematical Society, 2020, 373 (1), pp.343-383. ⟨10.1090/tran/7925⟩
Transactions of the American Mathematical Society, American Mathematical Society, 2020, 373 (1), pp.343-383. ⟨10.1090/tran/7925⟩
We give an explicit description of the 3-ball quotients constructed by Couwenberg-Heckman-Looijenga, and deduce the value of their orbifold Euler characteristics. For each lattice, we also give a presentation in terms of generators and relations.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::746966491c9fe676abb05901f2a15619
https://hal.archives-ouvertes.fr/hal-02965312
https://hal.archives-ouvertes.fr/hal-02965312
Autor:
Martin Deraux
Publikováno v:
Journal für die reine und angewandte Mathematik
Journal für die reine und angewandte Mathematik, Walter de Gruyter, 2017, ⟨10.1515/crelle-2017-0005⟩
Journal für die reine und angewandte Mathematik, Walter de Gruyter, 2017, ⟨10.1515/crelle-2017-0005⟩
We give an algebro-geometric construction of some of the non-arithmetic ball quotients constructed by the author, Parker and Paupert. The new construction reveals a relationship between the corresponding orbifold fundamental groups and the automorphi
Autor:
Martin Deraux
Publikováno v:
Commentarii Mathematici Helvetici
Commentarii Mathematici Helvetici, European Mathematical Society, 2018, 93 (3), pp.533-554. ⟨10.4171/CMH/443⟩
Commentarii Mathematici Helvetici, European Mathematical Society, 2018, 93 (3), pp.533-554. ⟨10.4171/CMH/443⟩
We construct some non-arithmetic ball quotients as branched covers of a quotient of an Abelian surface by a finite group, and compare them with lattices that previously appear in the literature. This gives an alternative construction, which is indepe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::08743a1dbe7377811b74e0a15d7e1a88
https://hal.archives-ouvertes.fr/hal-01890761
https://hal.archives-ouvertes.fr/hal-01890761
Autor:
Martin Deraux
Publikováno v:
Experimental Mathematics
Experimental Mathematics, Taylor & Francis, 2015, 24 (3), pp 355-370. ⟨10.1080/10586458.2014.996835⟩
Experimental Mathematics, Taylor & Francis, 2015, 24 (3), pp 355-370. ⟨10.1080/10586458.2014.996835⟩
We consider the discrete representations of 3-manifold groups into $PU(2,1)$ that appear in the Falbel-Koseleff-Rouillier census, such that the peripheral subgroups have cyclic unipotent holonomy. We show that two of these representations have conjug
Publikováno v:
Inventiones mathematicae, 2016, Vol.203(3), pp.681-771 [Peer Reviewed Journal]
Inventiones Mathematicae
Inventiones Mathematicae, Springer Verlag, 2016, 203 (3), pp 681-771. ⟨10.1007/s00222-015-0600-1⟩
Inventiones Mathematicae
Inventiones Mathematicae, Springer Verlag, 2016, 203 (3), pp 681-771. ⟨10.1007/s00222-015-0600-1⟩
We produce a family of new, non-arithmetic lattices in $${\mathrm{PU}}(2,1)$$ . All previously known examples were commensurable with lattices constructed by Picard, Mostow, and Deligne–Mostow, and fell into nine commensurability classes. Our group
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::694db74741acc231a2e7fad6291d5c39
http://dro.dur.ac.uk/15424/
http://dro.dur.ac.uk/15424/
Autor:
Martin Deraux
Publikováno v:
Geometry and Topology
Geometry and Topology, Mathematical Sciences Publishers, 2016, 20 (6), pp.3571-3621
Geom. Topol. 20, no. 6 (2016), 3571-3621
Geometry and Topology, Mathematical Sciences Publishers, 2016, 20 (6), pp.3571-3621
Geom. Topol. 20, no. 6 (2016), 3571-3621
We describe a simple fundamental domain for the holonomy group of the boundary unipotent spherical CR uniformization of the figure eight knot complement, and deduce that small deformations of that holonomy group (such that the boundary holonomy remai
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b7ac9b0cebe4b44147156fc2efee2901
https://hal.archives-ouvertes.fr/hal-01071444/file/deformFig8.pdf
https://hal.archives-ouvertes.fr/hal-01071444/file/deformFig8.pdf
Autor:
Elisha Falbel, Martin Deraux
Publikováno v:
Geometry and Topology
Geometry and Topology, Mathematical Sciences Publishers, 2015, 19, pp.237-293. ⟨10.2140/gt.2015.19.237⟩
Geometry and Topology, 2015, 19, pp.237-293. ⟨10.2140/gt.2015.19.237⟩
Geom. Topol. 19, no. 1 (2015), 237-293
Geometry and Topology, Mathematical Sciences Publishers, 2015, 19, pp.237-293. ⟨10.2140/gt.2015.19.237⟩
Geometry and Topology, 2015, 19, pp.237-293. ⟨10.2140/gt.2015.19.237⟩
Geom. Topol. 19, no. 1 (2015), 237-293
International audience; We show that the figure eight knot complement admits a uniformizable spherical CR structure, i.e. it occurs as the manifold at infinity of a complex hyperbolic orbifold. The uniformization is unique provided we require the per
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5d53105faadcc9c6576653622738d794
https://hal.archives-ouvertes.fr/hal-00805427v2/document
https://hal.archives-ouvertes.fr/hal-00805427v2/document