Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Martin A. Magid"'
Publikováno v:
J. Geom. Symmetry Phys. 41 (2016), 77-95
JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS
JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS
We introduce helicoidal hypersurface in the four dimensional Euclidean space. We calculate the mean and the Gaussian curvature, and some relations of the helicoidal hypersurface. Then we give the Laplace-Beltrami operator of the helicoidal hypersurfa
Autor:
Martin A. Magid, M. P. Dussan
Publikováno v:
Journal of Geometry and Physics. 73:187-199
We solve the Bjorling problem for timelike surfaces in R 2 4 constructing a special normal frame and a split-complex representation formula. We use this solution to construct new examples of timelike minimal surfaces and to define a notion of symmetr
Publikováno v:
Journal of Mathematical Analysis and Applications. 377:481-494
We solve the Bjorling problem for timelike surfaces in the Lorentz–Minkowski space through a split-complex representation formula obtained for this kind of surface. Our approach uses the split-complex numbers and natural split-holomorphic extension
Autor:
Martin A. Magid
Publikováno v:
Annales Polonici Mathematici. 83:129-139
Lorentzian surfaces in Lorentz three-space are studied using an indefinite version of the quaternions. A classification theorem for Bonnet pairs in Lorentz three-space is obtained.
Autor:
Luc Vrancken, Martin A. Magid
Publikováno v:
Journal of Geometry. 68:192-199
In this paper we characterize affine translation surfaces with constant Gaussian curvature. We show that such surfaces must be flat and that one of the defining curves must be planar.
Autor:
Luc Vrancken, Martin A. Magid
Publikováno v:
Geometriae Dedicata. 81:19-31
In this paper we study nondegenerate affine surfaces in the 4-dimensional affine space $$\mathbb{R}^4 $$ . We assume that both the connection ∇ and the normal connection ∇⊥ induced by the canonical equiaffine transversal bundle are flat. Surfac
Autor:
Martin A. Magid, Luc Vrancken
Publikováno v:
Results in Mathematics. 35:134-144
Publikováno v:
Manuscripta Mathematica. 88:275-289
A surface in ℝ4 is called affine umbilical if for each vector belonging to the affine normal plane the corresponding shape operator is a multiple of the identity. We will classify affine umbilical definite surfaces which either have constant curvat
Publikováno v:
Geometriae Dedicata. 57:55-71
IfM2 is a nondegenerate surface in a 4-dimensional Riemannian manifold\(\tilde M\), then there is a natural affine metricg defined onM2. It is shown that this affine metricg is conformal to the induced Riemannian metric onM2 if and only ifM2 is a min
Autor:
Martin A. Magid, M. P. Dussan
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e10a87261ab2428228985bca0f8da9de