Zobrazeno 1 - 10
of 54
pro vyhledávání: '"Martin, Orr"'
Publikováno v:
Current Opinion in Anaesthesiology; December 2024, Vol. 37 Issue: 6 p631-637, 7p
Autor:
Martin Orr, Christian Schnell
Publikováno v:
Algebra & Number Theory. 17:1231-1237
Autor:
Kerryanne Johnson, Stacey Neilson, Andrew To, Nezar Amir, Andrew Cave, Tony Scott, Martin Orr, Mia Parata, Victoria Day, Patrick Gladding
Publikováno v:
Journal of Cardiovascular Development and Disease, Vol 2, Iss 2, Pp 93-107 (2015)
Electrocardiogram (ECG)-based detection of left ventricular systolic dysfunction (LVSD) has poor specificity and positive predictive value, even when including major ECG abnormalities, such as left bundle branch block (LBBB) within the criteria for d
Externí odkaz:
https://doaj.org/article/5a24c79060984f93a7ba7444d898086a
Publikováno v:
Orr, M, Skorobogatov, A N, Valloni, D & Zarhin, Y G 2022, ' Invariant Brauer group of an abelian variety ', Israel Journal of Mathematics, vol. 249, no. 2, pp. 695-733 . https://doi.org/10.1007/s11856-022-2323-5
We study a new object that can be attached to an abelian variety or a complex torus: the invariant Brauer group, as recently defined by Yang Cao. Over the field of complex numbers this is an elementary abelian 2-group with an explicit upper bound on
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::48e0651bf09013eab568b414498d59f1
http://wrap.warwick.ac.uk/150656/1/WRAP-invariant-Brauer-group-abelian-variety-Orr-2021.pdf
http://wrap.warwick.ac.uk/150656/1/WRAP-invariant-Brauer-group-abelian-variety-Orr-2021.pdf
Publikováno v:
American Journal of Mathematics
Orr, M, Skorobogatov, A N & Zarhin, Y G 2021, ' On uniformity conjectures for abelian varieties and K3 surfaces ', American Journal of Mathematics, vol. 143, no. 6, pp. 1665-1702 . https://doi.org/10.1353/ajm.2021.0043
Orr, M, Skorobogatov, A N & Zarhin, Y G 2021, ' On uniformity conjectures for abelian varieties and K3 surfaces ', American Journal of Mathematics, vol. 143, no. 6, pp. 1665-1702 . https://doi.org/10.1353/ajm.2021.0043
We discuss logical links among uniformity conjectures concerning K3 surfaces and abelian varieties of bounded dimension defined over number fields of bounded degree. The conjectures concern the endomorphism algebra of an abelian variety, the Neron-Se
Publikováno v:
Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology.
Publikováno v:
Neuropsychiatric disease and treatment. 18
Benjamin Kearns, Katy Cooper, Martin Orr, Munira Essat, Jean Hamilton, Anna Cantrell School of Health and Related Research (SCHARR), the University of Sheffield, Sheffield, UKCorrespondence: Benjamin Kearns, SCHARR, the University of Sheffield, Regen
Autor:
Christopher Daw, Martin Orr
Publikováno v:
Daw, C & Orr, M 2021, ' Unlikely Intersections with ExCM curves in A2 ', Annali della Scuola Normale di Pisa-Classe di Scienze, pp. 1705-1745 . https://doi.org/10.2422/2036-2145.202006_014
The Zilber--Pink conjecture predicts that an algebraic curve in A2 has only finitely many intersections with the special curves, unless it is contained in a proper special subvariety. Under a large Galois orbits conjecture, we prove the finiteness of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c913baf7b1c7b4dc338cd51b8585dbde
http://wrap.warwick.ac.uk/142122/1/WRAP-unlikely-intersections-ExCM-curves-A2-Orr-2020.pdf
http://wrap.warwick.ac.uk/142122/1/WRAP-unlikely-intersections-ExCM-curves-A2-Orr-2020.pdf
Publikováno v:
Journal of Innovation in Health Informatics, Vol 19, Iss 1, Pp 7-15 (2011)
Background Adherence to antidepressant therapy remains a major issue worldwide. Most people with depression are treated in a general practice setting, but many stop taking antidepressants before completing a six-month course as recommended by guideli
Externí odkaz:
https://doaj.org/article/e075201bdcc7407795d5485081754e83
Autor:
Christopher Daw, Martin Orr
Publikováno v:
Daw, C & Orr, M 2021, ' Quantitative Reduction Theory and Unlikely Intersections ', International Mathematics Research Notices . https://doi.org/10.1093/imrn/rnab173
We prove quantitative versions of Borel and Harish-Chandra's theorems on reduction theory for arithmetic groups. Firstly, we obtain polynomial bounds on the lengths of reduced integral vectors in any rational representation of a reductive group. Seco
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::332790166398c542b4ad605a81d8c1fd
https://centaur.reading.ac.uk/99207/8/rnab173.pdf
https://centaur.reading.ac.uk/99207/8/rnab173.pdf