Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Maronikolakis, Konstantinos"'
A holomorphic function $f$ on the unit disc $\mathbb{D}$ belongs to the class $\mathcal{U}_A (\mathbb{D})$ of Abel universal functions if the family $\{f_r: 0\leq r<1\}$ of its dilates $f_r(z):=f(rz)$ is dense in the Banach space of all continuous fu
Externí odkaz:
http://arxiv.org/abs/2401.02367
A holomorphic function $f$ on the unit disc $\mathbb{D}$ belongs to the class $\mathcal{U}_A(\mathbb{D})$ of Abel universal functions if the family $\{f_r: 0\leq r<1\}$ of its dilates $f_r(z):=f(rz)$ is dense in the space of continuous functions on $
Externí odkaz:
http://arxiv.org/abs/2310.05611
Autor:
Maronikolakis, Konstantinos
Recently, Charpentier showed that there exist holomorphic functions $f$ in the unit disk such that, for any proper compact subset $K$ of the unit circle, any continuous function $\phi$ on $K$ and any compact subset $L$ of the unit disk, there exists
Externí odkaz:
http://arxiv.org/abs/2106.04002
We establish generic existence of Universal Taylor Series on products $\Omega = \prod \Omega_i$ of planar simply connected domains $\Omega_i$ where the universal approximation holds on products $K$ of planar compact sets with connected complements pr
Externí odkaz:
http://arxiv.org/abs/2008.06984
We generalize the universal power series of Seleznev to several variables and we allow the coefficients to depend on parameters. Then, the approximable functions may depend on the same parameters. The universal approximation holds on products $K = \d
Externí odkaz:
http://arxiv.org/abs/2008.03780
We show generic existence of power series a with complex coefficients a_n, such that the sequence of partial sums of a new power series where its coefficients b_n are functions of a_0, a_1, ..., a_n approximate every polynomial uniformly on every com
Externí odkaz:
http://arxiv.org/abs/1905.10556
Autor:
Maronikolakis, Konstantinos
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 August 2022 512(1)
Publikováno v:
Complex Analysis & its Synergies; 4/13/2021, Vol. 7 Issue 2, p1-4, 4p