Zobrazeno 1 - 10
of 149
pro vyhledávání: '"Marmi, S"'
We investigate and prove the mathematical properties of a general class of one-dimensional unimodal smooth maps perturbed with a heteroscedastic noise. Specifically, we investigate the stability of the associated Markov chain, show the weak convergen
Externí odkaz:
http://arxiv.org/abs/2305.13475
Autor:
Marmi, S.
This is an introduction to small divisors problems. The material treated in this book was brought together for a PhD course I tought at the University of Pisa in the spring of 1999. Here is a Table of Contents: Part I One Dimensional Small Divisors.
Externí odkaz:
http://arxiv.org/abs/math/0009232
Autor:
Carletti, T., Marmi, S.
We study Siegel's center problem on the linearization of germs of diffeomorphisms in one variable. In addition of the classical problems of formal and analytic linearization, we give sufficient conditions for the linearization to belong to some algeb
Externí odkaz:
http://arxiv.org/abs/math/0003105
The Brjuno function arises naturally in the study of one--dimensional analytic small divisors problems. It belongs to $\hbox{BMO}({\Bbb T}^{1})$ and it is stable under H\"older perturbations. It is related to the size of Siegel disks by various rigor
Externí odkaz:
http://arxiv.org/abs/math/9912018
Autor:
Moussa, P., Marmi, S.
The continued fraction expansion of the real number $x=a_0+x_0, a_0\in {\ZZ},$ is given by $0\leq x_n<1, x_{n}^{-1}=a_{n+1}+ x_{n+1}, a_{n+1}\in {\NN},$ for $n\geq 0.$ The Brjuno function is then $B(x)=\sum_{n=0}^{\infty}x_0x_1... x_{n-1}\ln(x_n^{-1}
Externí odkaz:
http://arxiv.org/abs/math/9912019
Publikováno v:
In Energy Conversion and Management January 2014 77:680-689
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
When prices reflect all available information, the price dynamics is a martingale and the market is said to be ef-ficient. However, much empirical evidence supports the conclusion about the inefficiency of financial markets, especially at high-freque
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::00a6019f277aa21728fc02c9d0d3ffd5
https://hdl.handle.net/11384/129004
https://hdl.handle.net/11384/129004
Publikováno v:
Journal of the American Mathematical Society, 2005 Oct 01. 18(4), 823-872.
Externí odkaz:
https://www.jstor.org/stable/20161260