Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Marly Guimaraes Fernandes Costa"'
Autor:
Clahildek Matos Xavier, Marly Guimaraes Fernandes Costa, Cicero Ferreira Fernandes Costa Filho
Publikováno v:
IEEE Access, Vol 8, Pp 24229-24241 (2020)
This study proposes determining optimal locations for expanding a higher education system by using populational and social criteria. With this aim, this work evaluates single objective location models in determining the optimal distribution of higher
Externí odkaz:
https://doaj.org/article/17c8e41050df4a6a907e6480bb308b23
Autor:
Bashir Zeimarani, Marly Guimaraes Fernandes Costa, Nilufar Zeimarani Nurani, Sabrina Ramos Bianco, Wagner Coelho De Albuquerque Pereira, Cicero Ferreira Fernandes Costa Filho
Publikováno v:
IEEE Access, Vol 8, Pp 133349-133359 (2020)
In recent years, convolutional neural networks (CNNs) have found many applications in medical image analysis. Having enough labeled data, CNNs could be trained to learn image features and used for object localization, classification, and segmentation
Externí odkaz:
https://doaj.org/article/70f97f255cb747438cde019373c0ce1d
Methodology of Data Fusion Using Deep Learning for Semantic Segmentation of Land Types in the Amazon
Autor:
Joel Parente De Oliveira, Marly Guimaraes Fernandes Costa, Cicero Ferreira Fernandes Costa Filho
Publikováno v:
IEEE Access, Vol 8, Pp 187864-187875 (2020)
This study proposes a methodology using deep learning and a multi-resolution segmentation algorithm to perform the semantic segmentation of remote sensing images. Initially the image is segmented using a CNN, and then an image with homogeneous region
Externí odkaz:
https://doaj.org/article/76a7190f37424c5f881cd692e9479941
Autor:
Makoto Miyagawa, Marly Guimaraes Fernandes Costa, Marco Antonio Gutierrez, Joao Pedro Guimaraes Fernandes Costa, Cicero Ferreira Fernandes Costa Filho
Publikováno v:
IEEE Access, Vol 7, Pp 66167-66175 (2019)
Optical coherence tomography (OCT) technology enables experts to analyze coronary lesions from high-resolution intravascular images. Studies have shown a relationship between vascular bifurcation and a higher occurrence of wall thickening and lesions
Externí odkaz:
https://doaj.org/article/28a99d185c464abfb98d94ee1fd51d83
Autor:
cicero ferreira fernandes cos filho, Kellen Alvarenga Adriely Guimaraes, José Robson Luís Oliveira Amorim, Marly Guimaraes Fernandes Costa
Publikováno v:
SSRN Electronic Journal.
Autor:
Mikaela Kalline Maciel Serrão, Marly Guimaraes Fernandes Costa, cicero ferreira fernandes cos filho
Publikováno v:
SSRN Electronic Journal.
Publikováno v:
Sensors, Vol 23, Iss 9, p 4409 (2023)
Human Activity Recognition (HAR) is a complex problem in deep learning, and One-Dimensional Convolutional Neural Networks (1D CNNs) have emerged as a popular approach for addressing it. These networks efficiently learn features from data that can be
Externí odkaz:
https://doaj.org/article/c70a5a67077e4a8182c81a664cd4ef1a
A Hybrid Deep Neural Network Architecture for Day-Ahead Electricity Forecasting: Post-COVID Paradigm
Autor:
Neilson Luniere Vilaça, Marly Guimarães Fernandes Costa, Cicero Ferreira Fernandes Costa Filho
Publikováno v:
Energies, Vol 16, Iss 8, p 3546 (2023)
Predicting energy demand in adverse scenarios, such as the COVID-19 pandemic, is critical to ensure the supply of electricity and the operation of essential services in metropolitan regions. In this paper, we propose a deep learning model to predict
Externí odkaz:
https://doaj.org/article/0b9af3089ee04a83b15b9422f9d0fa8f
Autor:
Marly Guimarães Fernandes Costa, João Paulo Mendes Campos, Gustavo de Aquino e Aquino, Wagner Coelho de Albuquerque Pereira, Cícero Ferreira Fernandes Costa Filho
Publikováno v:
BMC Medical Imaging, Vol 19, Iss 1, Pp 1-13 (2019)
Abstract Background Outlining lesion contours in Ultra Sound (US) breast images is an important step in breast cancer diagnosis. Malignant lesions infiltrate the surrounding tissue, generating irregular contours, with spiculation and angulated margin
Externí odkaz:
https://doaj.org/article/df360846781d45e9a7898e98c2a9c395