Zobrazeno 1 - 10
of 295
pro vyhledávání: '"Marletta, M. A."'
Autor:
Ferraresso, F., Marletta, M.
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 August 2024 536(1)
Publikováno v:
Integral Equations and Operator Theory 2019
This paper discusses how much information on a Friedrichs model operator can be detected from `measurements on the boundary'. We use the framework of boundary triples to introduce the generalised Titchmarsh-Weyl $M$-function and the detectable subspa
Externí odkaz:
http://arxiv.org/abs/1908.11717
Autor:
Ferraresso, F., Marletta, M.
Publikováno v:
In Journal of Differential Equations 15 February 2023 346:313-346
Publikováno v:
In Journal de mathématiques pures et appliquées February 2023 170:96-135
In this article we develop a functional model for a general maximal dissipative operator. We construct the selfadjoint dilation of such operators. Unlike previous functional models, our model is given explicitly in terms of parameters of the original
Externí odkaz:
http://arxiv.org/abs/1804.08963
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We discuss the detectable subspaces of an operator. We analyse the relation between the M-function (the abstract Dirichlet to Neumann map) and the resolvent bordered by projections onto the detectable subspaces. The abstract results are explored furt
Externí odkaz:
http://arxiv.org/abs/1404.6820
Autor:
Brown, B. M., Marletta, M.
We consider the effect of regularization by interval truncation on the spectrum of a singular non-selfadjoint Sturm-Liouville operator. We present results on spectral inclusion and spectral exactness for the cases where the singularity is in Sims Cas
Externí odkaz:
http://arxiv.org/abs/math/0006218
Autor:
Brown, B. M., Marletta, M.
Publikováno v:
Proceedings: Mathematical, Physical and Engineering Sciences, 2003 Aug 01. 459(2036), 1987-2009.
Externí odkaz:
https://www.jstor.org/stable/3560058
Autor:
Brown, B. M., Marletta, M.
For any real limit-$n$ $2n$th-order selfadjoint linear differential expression on $[0,\infty)$, Titchmarsh- Weyl matrices $M(\lambda)$ can be defined. Two matrices of particu lar interest are the matrices $M_D(\lambda)$ and $M_N(\lambda)$ assoc iated
Externí odkaz:
http://arxiv.org/abs/math/9801051