Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Markus D Herrmann"'
Autor:
Julia Thierauf, Thomas Denize, Annie Li, Bianca L Gonda, Adam von Paternos, Atul K Bhan, Stefan T Kaluziak, Markus D Herrmann, A John Iafrate
Publikováno v:
Journal for ImmunoTherapy of Cancer, Vol 11, Iss Suppl 1 (2023)
Externí odkaz:
https://doaj.org/article/b6d72b9560994d028303dd7286fbfce1
Autor:
Rajesh C Dash, Nicholas Jones, Riki Merrick, Gunter Haroske, James Harrison, Craig Sayers, Nick Haarselhorst, Mikael Wintell, Markus D Herrmann, François Macary
Publikováno v:
Journal of Pathology Informatics, Vol 12, Iss 1, Pp 16-16 (2021)
Integrating the health-care enterprise (IHE) is an international initiative to promote the use of standards to achieve interoperability among health information technology systems. The Pathology and Laboratory Medicine domain within IHE has brought t
Externí odkaz:
https://doaj.org/article/1224621a036743af8ce035750bd9bed2
Autor:
Sarah N Dudgeon, Si Wen, Matthew G Hanna, Rajarsi Gupta, Mohamed Amgad, Manasi Sheth, Hetal Marble, Richard Huang, Markus D Herrmann, Clifford H Szu, Darick Tong, Bruce Werness, Evan Szu, Denis Larsimont, Anant Madabhushi, Evangelos Hytopoulos, Weijie Chen, Rajendra Singh, Steven N Hart, Ashish Sharma, Joel Saltz, Roberto Salgado, Brandon D Gallas
Publikováno v:
Journal of Pathology Informatics, Vol 12, Iss 1, Pp 45-45 (2021)
Purpose: Validating artificial intelligence algorithms for clinical use in medical images is a challenging endeavor due to a lack of standard reference data (ground truth). This topic typically occupies a small portion of the discussion in research p
Externí odkaz:
https://doaj.org/article/d995816493cc41658ea373f1df2d7e73
Autor:
Hetal Desai Marble, Richard Huang, Sarah Nixon Dudgeon, Amanda Lowe, Markus D Herrmann, Scott Blakely, Matthew O Leavitt, Mike Isaacs, Matthew G Hanna, Ashish Sharma, Jithesh Veetil, Pamela Goldberg, Joachim H Schmid, Laura Lasiter, Brandon D Gallas, Esther Abels, Jochen K Lennerz
Publikováno v:
Journal of Pathology Informatics, Vol 11, Iss 1, Pp 22-22 (2020)
Unlocking the full potential of pathology data by gaining computational access to histological pixel data and metadata (digital pathology) is one of the key promises of computational pathology. Despite scientific progress and several regulatory appro
Externí odkaz:
https://doaj.org/article/be50a3b9cd054f7984beeae023b6a521
Autor:
Markus D Herrmann, David A Clunie, Andriy Fedorov, Sean W Doyle, Steven Pieper, Veronica Klepeis, Long P Le, George L Mutter, David S Milstone, Thomas J Schultz, Ron Kikinis, Gopal K Kotecha, David H Hwang, Katherine P Andriole, A John Iafrate, James A Brink, Giles W Boland, Keith J Dreyer, Mark Michalski, Jeffrey A Golden, David N Louis, Jochen K Lennerz
Publikováno v:
Journal of Pathology Informatics, Vol 9, Iss 1, Pp 37-37 (2018)
Background: Digital Imaging and Communications in Medicine (DICOM®) is the standard for the representation, storage, and communication of medical images and related information. A DICOM file format and communication protocol for pathology have been
Externí odkaz:
https://doaj.org/article/d0f634989b4f4163b8669fb2c90130e7
Autor:
Andreas S Papazoglou, Efstratios Karagiannidis, Alexandros Liatsos, Andreana Bompoti, Dimitrios V Moysidis, Christos Arvanitidis, Fani Tsolaki, Sokratis Tsagkaropoulos, Stamatios Theocharis, Georgios Tagarakis, James S Michaelson, Markus D Herrmann
Publikováno v:
American Journal of Clinical Pathology. 159:242-254
Objectives Micro–computed tomography (micro-CT) is a novel, nondestructive, slide-free digital imaging modality that enables the acquisition of high-resolution, volumetric images of intact surgical tissue specimens. The aim of this systematic mappi
Autor:
Andreana Bompoti, Andreas S. Papazoglou, Dimitrios V. Moysidis, Nikolaos Otountzidis, Efstratios Karagiannidis, Nikolaos Stalikas, Eleftherios Panteris, Vijayakumar Ganesh, Thomas Sanctuary, Christos Arvanitidis, Georgios Sianos, James S. Michaelson, Markus D. Herrmann
Publikováno v:
Diagnostics, Vol 11, Iss 11, p 2075 (2021)
Micro-computed tomography (micro-CT) is a promising novel medical imaging modality that allows for non-destructive volumetric imaging of surgical tissue specimens at high spatial resolution. The aim of this study is to provide a comprehensive assessm
Externí odkaz:
https://doaj.org/article/dc70c3ab7d704dcca2bc8bb5f7f855ce
Autor:
Christopher P. Bridge, Chris Gorman, Steven Pieper, Sean W. Doyle, Jochen K. Lennerz, Jayashree Kalpathy-Cramer, David A. Clunie, Andriy Y. Fedorov, Markus D. Herrmann
Publikováno v:
Journal of Digital Imaging. 35:1719-1737
Machine learning (ML) is revolutionizing image-based diagnostics in pathology and radiology. ML models have shown promising results in research settings, but the lack of interoperability between ML systems and enterprise medical imaging systems has b
Autor:
Ron Kikinis, Keyvan Farahani, Ulrike Wagner, Todd Pihl, Ilya Shmulevich, Erik Ziegler, George White, Mi Tian, Daniela P. Schacherer, Madelyn Reyes, Davide Punzo, James Petts, Suzanne Paquette, Chad Osborne, Igor Octaviano, Henning Höfener, Markus D. Herrmann, William Clifford, Dennis Bontempi, Afshin Akbarzadeh, Rob Lewis, André Homeyer, Hugo J.W.L. Aerts, Steve Pieper, David A. Clunie, David Pot, William J.R. Longabaugh, Andrey Fedorov
Supplemental video 4 from NCI Imaging Data Commons
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eff808e306db91b10b654ddf0f517dac
https://doi.org/10.1158/0008-5472.22357248.v1
https://doi.org/10.1158/0008-5472.22357248.v1
Autor:
Ron Kikinis, Keyvan Farahani, Ulrike Wagner, Todd Pihl, Ilya Shmulevich, Erik Ziegler, George White, Mi Tian, Daniela P. Schacherer, Madelyn Reyes, Davide Punzo, James Petts, Suzanne Paquette, Chad Osborne, Igor Octaviano, Henning Höfener, Markus D. Herrmann, William Clifford, Dennis Bontempi, Afshin Akbarzadeh, Rob Lewis, André Homeyer, Hugo J.W.L. Aerts, Steve Pieper, David A. Clunie, David Pot, William J.R. Longabaugh, Andrey Fedorov
The National Cancer Institute (NCI) Cancer Research Data Commons (CRDC) aims to establish a national cloud-based data science infrastructure. Imaging Data Commons (IDC) is a new component of CRDC supported by the Cancer Moonshot. The goal of IDC is t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::52d35acfd1785a77bbd359975461f109
https://doi.org/10.1158/0008-5472.c.6491724.v1
https://doi.org/10.1158/0008-5472.c.6491724.v1