Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Marko Ristin"'
Autor:
Torben Miny, Sebastian Heppner, Igor Garmaev, Tobias Kleinert, Marko Ristin, Hans Wernher Van De Venn, Bjorn Otto, Karsten Meinecke, Christian Diedrich, Nico Braunisch, Martin Wollschlaeger
The digital twin, or more precisely the Asset Administration Shell, is the key element for interoperability in Industrie 4.0. Together with the asset, it forms the I4.0 component. For the development of I4.0 components, the availability of suitable s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4a11f1ca82061b3da5d915f483953f25
https://hdl.handle.net/11475/27080
https://hdl.handle.net/11475/27080
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e5a4c52b33f9808cb034340bc7dbf32e
https://hdl.handle.net/11475/23646
https://hdl.handle.net/11475/23646
Publikováno v:
RE
Datacite
ZHAW digitalcollection
UnpayWall
Microsoft Academic Graph
Sygma
arXiv.org e-Print Archive
Datacite
ZHAW digitalcollection
UnpayWall
Microsoft Academic Graph
Sygma
arXiv.org e-Print Archive
Comment: Pre-print of our submission to 29th IEEE International Requirements Engineering Conference
Digitalization is forging its path in the architecture, construction, engineering, operation (AECO) industry. This trend demands not only solutio
Digitalization is forging its path in the architecture, construction, engineering, operation (AECO) industry. This trend demands not only solutio
Publikováno v:
IEEE transactions on pattern analysis and machine intelligence. 38(3)
Large image datasets such as ImageNet or open-ended photo websites like Flickr are revealing new challenges to image classification that were not apparent in smaller, fixed sets. In particular, the efficient handling of dynamically growing datasets,
Publikováno v:
CVPR
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
ISBN:978-1-4673-6964-0
ISBN:978-1-4673-6963-3
ISBN:978-1-4673-6965-7
ISBN:978-1-4673-6964-0
ISBN:978-1-4673-6963-3
ISBN:978-1-4673-6965-7
Publikováno v:
2015 14th IAPR International Conference on Machine Vision Applications (MVA)
MVA
MVA
2015 14th IAPR International Conference on Machine Vision Applications (MVA)
ISBN:978-4-901122-14-6
ISBN:978-4-901122-14-6
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4c966c9120d5423e1e405487f4a2a8d4
https://lirias.kuleuven.be/handle/123456789/532396
https://lirias.kuleuven.be/handle/123456789/532396
Publikováno v:
CVPR
© 2014 IEEE. In recent years, large image data sets such as 'ImageNet', 'TinyImages' or ever-growing social networks like 'Flickr' have emerged, posing new challenges to image classification that were not apparent in smaller image sets. In particula
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::906d675f3cc5d2766f740296fb2ad600
https://lirias.kuleuven.be/handle/123456789/485349
https://lirias.kuleuven.be/handle/123456789/485349
Publikováno v:
Computer Vision – ACCV 2012 ISBN: 9783642373305
ACCV (1)
ACCV (1)
State-of-the-art methods for object detection are mostly based on an expensive exhaustive search over the image at different scales. In order to reduce the computational time, one can perform a selective search to obtain a small subset of relevant ob
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::98c15eb6cc7f6ebe41dbdf26b23d5a10
https://lirias.kuleuven.be/handle/123456789/377379
https://lirias.kuleuven.be/handle/123456789/377379