Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Mark Rychnovsky"'
Autor:
Guillaume Barraquand, Mark Rychnovsky
We consider random walks on the nonnegative integers in a space-time dependent random environment. We assume that transition probabilities are given by independent $\mathrm{Beta}(\mu,\mu)$ distributed random variables, with a specific behaviour at th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1f106bf4ee71a10515a8c86940b7ae57
Autor:
Mark Rychnovsky, Greg Huber, Kyle Kawagoe, Boris Veytsman, Serina Chang, David Yllanes, R. Pnini, Lucy M Li, Jonathan Miller
Publikováno v:
Physical Review Research. 3
A variant of the SIR model for an inhomogeneous population is introduced in order to account for the effect of variability in susceptibility and infectiousness across a population. An initial formulation of this dynamics leads to infinitely many diff
Autor:
Guillaume Barraquand, Mark Rychnovsky
Publikováno v:
Electronic Journal of Probability
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2020, 25, ⟨10.1214/20-EJP515⟩
Electron. J. Probab.
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2020, 25, ⟨10.1214/20-EJP515⟩
Electron. J. Probab.
We consider n-point sticky Brownian motions: a family of n diffusions that evolve as independent Brownian motions when they are apart, and interact locally so that the set of coincidence times has positive Lebesgue measure with positive probability.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::791d31fb8f37069b6d336692be7f17bc
https://hal.archives-ouvertes.fr/hal-02999050
https://hal.archives-ouvertes.fr/hal-02999050
Autor:
Guillaume Barraquand, Mark Rychnovsky
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783030150952
Stochastic Dynamics out of Equilibrium
Stochastic Dynamics out of Equilibrium, pp.483-522, 2019, ⟨10.1007/978-3-030-15096-9_17⟩
Stochastic Dynamics out of Equilibrium
Stochastic Dynamics out of Equilibrium, pp.483-522, 2019, ⟨10.1007/978-3-030-15096-9_17⟩
We study an oriented first passage percolation model for the evolution of a river delta. This model is exactly solvable and occurs as the low temperature limit of the beta random walk in random environment. We analyze the asymptotics of an exact form
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2a1941d2b6514e9ccc44253612451c66
https://doi.org/10.1007/978-3-030-15096-9_17
https://doi.org/10.1007/978-3-030-15096-9_17
Publikováno v:
e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid
instname
instname
Given a matrix polynomial P ( λ ) = ∑ i = 0 k λ i A i of degree k , where A i are n × n matrices with entries in a field F , the development of linearizations of P ( λ ) that preserve whatever structure P ( λ ) might posses has been a very act