Zobrazeno 1 - 10
of 51
pro vyhledávání: '"Mark Rudelson"'
Autor:
Anirban Basak, Mark Rudelson
Publikováno v:
Probability Theory and Related Fields. 180:233-308
We consider three models of sparse random graphs: undirected and directed Erdős–Renyi graphs and random bipartite graph with two equal parts. For such graphs, we show that if the edge connectivity probability p satisfies $$np\ge \log n+k(n)$$ with
Autor:
Han Huang, Mark Rudelson
Publikováno v:
Random Structures & Algorithms. 57:393-438
This paper deals with the problem of graph matching or network alignment for Erd\H{o}s--R\'enyi graphs, which can be viewed as a noisy average-case version of the graph isomorphism problem. Let $G$ and $G'$ be $G(n, p)$ Erd\H{o}s--R\'enyi graphs marg
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::db48a949526d9bc4b5cd8c39e86f149a
http://arxiv.org/abs/2110.05000
http://arxiv.org/abs/2110.05000
Autor:
Alexander Barvinok, Mark Rudelson
We provide a sufficient condition for solvability of a system of real quadratic equations $p_i(x)=y_i$, $i=1, \ldots, m$, where $p_i: {\mathbb R}^n \longrightarrow {\mathbb R}$ are quadratic forms. By solving a positive semidefinite program, one can
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ba682eb691f3a973e56a5073af8e3bca
http://arxiv.org/abs/2106.08119
http://arxiv.org/abs/2106.08119
Autor:
Mark Rudelson
Publikováno v:
Random Matrices. :303-340
Autor:
Konstantin Tikhomirov, Mark Rudelson
Publikováno v:
Geometric and Functional Analysis. 29:561-637
The circular law asserts that the empirical distribution of eigenvalues of appropriately normalized $${n \times n}$$ matrix with i.i.d. entries converges to the uniform measure on the unit disc as the dimension n grows to infinity. Consider an $${n \
Autor:
Hermann König, Mark Rudelson
Let Q n be the cube of side length one centered at the origin in R n , and let F be an affine ( n − d ) -dimensional subspace of R n having distance to the origin less than or equal to 1 2 , where 0 d n . We show that the ( n − d ) -dimensional v
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::01e570aebd51b02112d30fdec0526a5e
http://arxiv.org/abs/1908.09358
http://arxiv.org/abs/1908.09358
Autor:
Anirban Basak, Mark Rudelson
Publikováno v:
Ann. Probab. 47, no. 4 (2019), 2359-2416
For a class of sparse random matrices of the form $A_n =(\xi_{i,j}\delta_{i,j})_{i,j=1}^n$, where $\{\xi_{i,j}\}$ are i.i.d.~centered sub-Gaussian random variables of unit variance, and $\{\delta_{i,j}\}$ are i.i.d.~Bernoulli random variables taking
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8fc70b5245760e3ba7ca747c033962f9
Autor:
Shuheng Zhou, Mark Rudelson
Publikováno v:
Electron. J. Statist. 11, no. 1 (2017), 1699-1797
Suppose that we observe $y \in \mathbb{R}^n$ and $X \in \mathbb{R}^{n \times m}$ in the following errors-in-variables model: \begin{eqnarray*} y & = & X_0 \beta^* +\epsilon \\ X & = & X_0 + W, \end{eqnarray*} where $X_0$ is an $n \times m$ design mat
Publikováno v:
Israel Journal of Mathematics. 203:141-160
We provide an affirmative answer to a problem posed by Barvinok and Veomett in [4], showing that in general an n-dimensional convex body cannot be approximated by a projection of a section of a simplex of subexponential dimension. Moreover, we prove