Zobrazeno 1 - 10
of 120
pro vyhledávání: '"Mark K. Transtrum"'
Autor:
Sarah A. Willson, Aiden V. Harbick, Liana Shpani, Van Do, Helena Lew-Kiedrowska, Matthias U. Liepe, Mark K. Transtrum, S. J. Sibener
Publikováno v:
Physical Review Research, Vol 6, Iss 4, p 043133 (2024)
Nb_{3}Sn film coatings have the potential to drastically improve the accelerating performance of Nb superconducting radiofrequency (SRF) cavities in next-generation linear particle accelerators. Unfortunately, persistent Nb_{3}Sn stoichiometric mater
Externí odkaz:
https://doaj.org/article/fff01d04e0c345c698fb942a169dc908
Autor:
Zeming Sun, Thomas Oseroff, Zhaslan Baraissov, Darrah K. Dare, Katrina Howard, Benjamin Francis, Ajinkya C. Hire, Nathan Sitaraman, Tomas A. Arias, Mark K. Transtrum, Richard Hennig, Michael O. Thompson, David A. Muller, Matthias U. Liepe
Publikováno v:
Advanced Electronic Materials, Vol 9, Iss 8, Pp n/a-n/a (2023)
Abstract Superconducting radio‐frequency (SRF) resonators are critical components for particle accelerator applications, such as free‐electron lasers, and for emerging technologies in quantum computing. Developing advanced materials and their dep
Externí odkaz:
https://doaj.org/article/6eb58f31955d41a18417f565db6d6962
Publikováno v:
Physical Review Research, Vol 4, Iss 3, p L032044 (2022)
We consider how mathematical models enable predictions for conditions that are qualitatively different from the training data. We propose techniques based on information topology to find models that can apply their learning in regimes for which there
Externí odkaz:
https://doaj.org/article/365229e081ba4e61bea87dfe1b870fe5
Autor:
Katrina Pedersen, Ryan R. Jensen, Lucas K. Hall, Mitchell C. Cutler, Mark K. Transtrum, Kent L. Gee, Shane V. Lympany
Publikováno v:
Applied Sciences, Vol 13, Iss 14, p 8123 (2023)
Applying machine learning methods to geographic data provides insights into spatial patterns in the data as well as assists in interpreting and describing environments. This paper investigates the results of k-means clustering applied to 51 geospatia
Externí odkaz:
https://doaj.org/article/fdab04343939451ab0b028653bd0ac39
Publikováno v:
IEEE Systems Journal. 17:479-490
Autor:
Bradley C. Naylor, Christian N. K. Anderson, Marcus Hadfield, David H. Parkinson, Austin Ahlstrom, Austin Hannemann, Chad R. Quilling, Kyle J. Cutler, Russell L. Denton, Robert Adamson, Thomas E. Angel, Rebecca S. Burlett, Paul S. Hafen, John. C. Dallon, Mark K. Transtrum, Robert D. Hyldahl, John C. Price
Publikováno v:
Journal of proteome research. 21(11)
The synthesis of new proteins and the degradation of old proteins in vivo can be quantified in serial samples using metabolic isotope labeling to measure turnover. Because serial biopsies in humans are impractical, we set out to develop a method to c
Publikováno v:
Journal of Theoretical and Computational Acoustics.
Sensitivity analysis is a powerful tool for analyzing multi-parameter models. For example, the Fisher information matrix (FIM) and the Cramér–Rao bound (CRB) involve derivatives of a forward model with respect to parameters. However, these derivat
Autor:
Andrija T. Saric, Mark K. Transtrum, Vanja G. Svenda, Aleksandar M. Stankovic, Benjamin L. Francis
Publikováno v:
IEEE Transactions on Power Systems. 37:272-281
This paper presents a procedure for estimating the systems state when considerable Information and Communication Technology (ICT) component outages occur, leaving entire system areas un-observable. For this task, a novel method for analyzing system o
Autor:
Katrina Pedersen, Michael M. James, Alexandria R. Salton, Shane V. Lympany, Mark K. Transtrum, Kent L. Gee
Publikováno v:
JASA express letters. 1(12)
Modeling outdoor environmental sound levels is a challenging problem. This paper reports on a validation study of two continental-scale machine learning models using geospatial layers as inputs and the summer daytime A-weighted L50 as a validation me
Autor:
Yonatan Kurniawan, Cody L. Petrie, Kinamo J. Williams, Mark K. Transtrum, Ellad B. Tadmor, Ryan S. Elliott, Daniel S. Karls, Mingjian Wen
Publikováno v:
The Journal of Chemical Physics. 156
In this paper, we consider the problem of quantifying parametric uncertainty in classical empirical interatomic potentials (IPs) using both Bayesian (Markov Chain Monte Carlo) and frequentist (profile likelihood) methods. We interface these tools wit