Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Mariza Stefanello Simsen"'
Publikováno v:
Opuscula Mathematica, Vol 41, Iss 4, Pp 539-570 (2021)
This work concerns the study of asymptotic behavior of coupled systems of \(p(x)\)-Laplacian differential inclusions. We obtain that the generalized semiflow generated by the coupled system has a global attractor, we prove continuity of the solutions
Externí odkaz:
https://doaj.org/article/4b5d56c5202b45a083e3cac7d2256a45
Publikováno v:
Electronic Journal of Differential Equations, Vol 2019, Iss 26,, Pp 1-28 (2019)
We consider the evolution differential inclusion for a nonlocal operator that involves p(x)-Laplacian, $$ u_t-\Delta_{p(x)} u-\int_0^{t}g(t-s)\Delta_{p(x)} u(x,s)\,ds\in \mathbf{F}(u) \quad \text{in } Q_T=\Omega\times (0,T), $$ where $\Omega\su
Externí odkaz:
https://doaj.org/article/6d34465b9cf540658dbb8a881be6e655
Publikováno v:
Opuscula Mathematica, Vol 38, Iss 1, Pp 117-131 (2018)
In this work we study ODE limit problems for reaction-diffusion equations for large diffusion and we study the sensitivity of nonlinear ODEs with respect to initial conditions and exponent parameters. Moreover, we prove continuity of the flow and wea
Externí odkaz:
https://doaj.org/article/099d6af9fcbf4b9cb21bd3bf63f8605e
Publikováno v:
Scopus
We study the character of dependence on the data and the nonlinear structure of the equation for the solutions of the homogeneous Dirichlet problem for the evolution $p(x,t)$-Laplacian with the nonlinear source \[ u_t-\Delta_{p(x,t)}u=f(x,t,u),\quad
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::40fe68b9a8cd1e5252d9226da3483fcc
http://hdl.handle.net/10651/67534
http://hdl.handle.net/10651/67534
Publikováno v:
Communications on Pure & Applied Analysis. 19:2347-2368
In this work we consider a family of nonautonomous partial differential inclusions governed by \begin{document}$ p $\end{document} -laplacian operators with variable exponents and large diffusion and driven by a forcing nonlinear term of Heaviside ty
Publikováno v:
São Paulo Journal of Mathematical Sciences. 14:223-241
We study the sensitivity with respect to exponent and diffusion parameters for the problem $$\begin{aligned} \left\{ \begin{array}{l}\frac{\partial u_{\lambda }}{\partial t}-\text {div}(D_{\lambda }(x)|\nabla u_{\lambda }|^{p_{\lambda }(x)-2}\nabla u
Publikováno v:
Journal of Differential Equations. 266:3906-3924
In this work we study PDE limit problems for nonlinear reaction–diffusion equations and we study the sensitivity of nonlinear PDEs with respect to initial conditions and exponent parameters. Moreover, we prove continuity of the flow and weak upper
Publikováno v:
Discrete & Continuous Dynamical Systems - B. 24:3557-3567
In this work we improve the result presented by Kloeden-Simsen-Stefanello Simsen in [ 8 ] by reducing uniform conditions. We prove theoretical results in order to establish convergence in the Hausdorff semi-distance of the component subsets of the pu
Publikováno v:
Asymptotic Analysis. 111:43-68
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 35, Iss 3, Pp 241-254 (2017)
We prove continuity of the flows and upper semicontinuity of globalattractors for a Takeuchi-Yamada type equation with variableexponents.