Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Mariyama, Toshisada"'
Autor:
Junbang Liang, Joao Buzzatto, Bryan Busby, Haodan Jiang, Saori Matsunaga, Rintaro Haraguchi, Mariyama Toshisada, Bruce A. MacDonald, Minas Liarokapis
Publikováno v:
IEEE Open Journal of the Industrial Electronics Society, Vol 5, Pp 1104-1114 (2024)
In robotic assembly of flexible flat cables (FFCs), a unique challenge is the inherent difficulty in manipulating such flexible objects compared to their rigid counterparts and the precise estimation of the cable pose. This work proposes a framework
Externí odkaz:
https://doaj.org/article/78d608ce99e74b8cb3acd3a94967d2c6
In this article, two types of methods from different perspectives based on spectral normalization are described for ensuring the stability of the system controlled by a neural network. The first one is that the L2 gain of the feedback system is bound
Externí odkaz:
http://arxiv.org/abs/2012.13744
Autor:
Ota, Kei, Jha, Devesh K., Onishi, Tadashi, Kanezaki, Asako, Yoshiyasu, Yusuke, Sasaki, Yoko, Mariyama, Toshisada, Nikovski, Daniel
The main novelty of the proposed approach is that it allows a robot to learn an end-to-end policy which can adapt to changes in the environment during execution. While goal conditioning of policies has been studied in the RL literature, such approach
Externí odkaz:
http://arxiv.org/abs/2011.00155
Deep reinforcement learning (RL) algorithms have recently achieved remarkable successes in various sequential decision making tasks, leveraging advances in methods for training large deep networks. However, these methods usually require large amounts
Externí odkaz:
http://arxiv.org/abs/2003.01629
Autor:
Ota, Kei, Jha, Devesh K., Oiki, Tomoaki, Miura, Mamoru, Nammoto, Takashi, Nikovski, Daniel, Mariyama, Toshisada
In this paper, we propose a reinforcement learning-based algorithm for trajectory optimization for constrained dynamical systems. This problem is motivated by the fact that for most robotic systems, the dynamics may not always be known. Generating sm
Externí odkaz:
http://arxiv.org/abs/1903.05751
Publikováno v:
In Machine Learning with Applications 15 December 2022 10
Autor:
Takahashi, Atsushi *, Hokari, Hiroaki, Doi, Mamoru, Yoshikawa, Nobuyuki, Mariyama, Toshisada, Ueda, Naonori *
Publikováno v:
In IFAC PapersOnLine 2022 55(37):463-468
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Srinivasan, Mohit, Chakrabarty, Ankush, Quirynen, Rien, Yoshikawa, Nobuyuki, Mariyama, Toshisada, Cairano, Stefano Di
Publikováno v:
In IFAC PapersOnLine 2021 54(20):598-604
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.