Zobrazeno 1 - 10
of 128
pro vyhledávání: '"Marius Tucsnak"'
Publikováno v:
Journal of Functional Analysis
Journal of Functional Analysis, 2022, 283 (10)
Journal of Functional Analysis, 2022, 283 (10)
International audience; This work studies the reachable space of infinite dimensional control systems which are null controllable in any positive time, the typical example being the heat equation controlled from the boundary or from an arbitrary open
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fc42e68436840147f0e5e3c1b8918dbf
https://hal.science/hal-03380745v2/document
https://hal.science/hal-03380745v2/document
Publikováno v:
IFAC-PapersOnLine. 54:378-383
This paper is about the strong stabilization of small amplitude gravity water waves in a vertical rectangle. The control imposes the horizontal acceleration of the water along one vertical boundary segment, as a multiple of a scalar input function u,
Publikováno v:
IFAC-PapersOnLine. 53:7491-7496
We study a PDE based linearized model for the vertical motion of a solid floating at the free surface of a shallow viscous fluid. The solid is controlled by a vertical force exerted via an actuator. This force is the input of the system, whereas the
Publikováno v:
2021 60th IEEE Conference on Decision and Control (CDC).
Publikováno v:
2021 60th IEEE Conference on Decision and Control (CDC).
Autor:
Pei Su, Marius Tucsnak
We consider a control system describing the interaction of water waves with a partially immersed rigid body constraint to move only in the vertical direction. The fluid is modeled by the shallow water equations. The control signal is a vertical force
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cd6d2eea0f774f7897cc4b53cb063efd
https://hal.archives-ouvertes.fr/hal-03318766/file/fbody_Su_Marius.pdf
https://hal.archives-ouvertes.fr/hal-03318766/file/fbody_Su_Marius.pdf
In this article, we study the long-time behaviour of a system describing the coupled motion of a rigid body and of a viscous incompressible fluid in which the rigid body is contained. We assume that the system formed by the rigid body and the fluid f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3489d33108a48c70be28ec726dfd91a3
https://hal.archives-ouvertes.fr/hal-02545798v2/document
https://hal.archives-ouvertes.fr/hal-02545798v2/document
Publikováno v:
IFAC Papers
Mathematical Theory of Networks and Systems
Mathematical Theory of Networks and Systems, Aug 2021, Cambridge, United Kingdom. pp.205-212, ⟨10.1016/j.ifacol.2021.06.146⟩
IFAC-Papers
Mathematical Theory of Networks and Systems
Mathematical Theory of Networks and Systems, Aug 2021, Cambridge, United Kingdom. pp.205-212, ⟨10.1016/j.ifacol.2021.06.146⟩
IFAC-Papers
International audience; The PDE system introduced in Maity et al. (2019) describes the interaction of surface water waves with a floating solid, and takes into account the viscosity µ of the fluid. In this work, we study the Cummins type integro-dif
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::17a416202f135b5a3c6ea8ce84e03be4
https://oatao.univ-toulouse.fr/28292/
https://oatao.univ-toulouse.fr/28292/
Autor:
Marius Tucsnak, Kévin Le Balc'h
Publikováno v:
ESAIM: Control, Optimisation and Calculus of Variations
ESAIM: Control, Optimisation and Calculus of Variations, 2021, 27, pp.17. ⟨10.1051/cocv/2021008⟩
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2021, 27, pp.17. ⟨10.1051/cocv/2021008⟩
ESAIM: Control, Optimisation and Calculus of Variations, 2021, 27, pp.17. ⟨10.1051/cocv/2021008⟩
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2021, 27, pp.17. ⟨10.1051/cocv/2021008⟩
International audience; In this paper, we consider the infinite time horizon LQR optimal control problem for the linearized Boussinesq system. The goal is to justify the approximation by penalization of the free divergence condition in this context.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dc703f83905ace8f8a5fc195333008d1
https://hal.archives-ouvertes.fr/hal-03029864/file/LQR_BQ_2020_11_29.pdf
https://hal.archives-ouvertes.fr/hal-03029864/file/LQR_BQ_2020_11_29.pdf