Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Maris, E.G.G."'
Publikováno v:
Perception, 51, Suppl. 1, pp. 29-30
Perception, 51, 29-30
Perception, 51, 29-30
Item does not contain fulltext 2 p.
Autor:
Ambrogioni, L., Ebel, P.W., Hinne, M., Güçlü, U., Gerven, M.A.J. van, Maris, E.G.G., Chaudhuri, K., Sugiyama, M.
Publikováno v:
Chaudhuri, K.; Sugiyama, M. (ed.), Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) 2019, pp. 787-795
Chaudhuri, K.; Sugiyama, M. (ed.), Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) 2019, 787-795. [S.l.] : [S.n.]
STARTPAGE=787;ENDPAGE=795;ISSN=2640-3498;TITLE=Chaudhuri, K.; Sugiyama, M. (ed.), Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) 2019
Chaudhuri, K.; Sugiyama, M. (ed.), Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) 2019, 787-795. [S.l.] : [S.n.]
STARTPAGE=787;ENDPAGE=795;ISSN=2640-3498;TITLE=Chaudhuri, K.; Sugiyama, M. (ed.), Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) 2019
Item does not contain fulltext In this paper we introduce a semi-analytic variational framework for approximating the posterior of a Gaussian processes coupled through non-linear emission models. While the semi-analytic method can be applied to a lar
Autor:
Silva Pereira, S., Hindriks, R., Mühlberg, S., Maris, E.G.G., Ede, F.L. van, Griffa, A., Hagmann, P., Deco, G.
Publikováno v:
Brain Connectivity, 7, 9, pp. 541-557
Brain Connectivity, 7, 541-557
Brain Connectivity, 7, 541-557
Contains fulltext : 178654.pdf (Publisher’s version ) (Closed access) A popular way to analyze resting-state EEG and MEG data is to treat them as a functional network in which sensors are identified with nodes and the interaction between channel ti
Publikováno v:
Perception, 48, 168-169
Perception, 48, 2, pp. 168-169
Perception, 48, 2, pp. 168-169
Item does not contain fulltext 2 p.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::6a1a84420726f952757a2f223dcb21b9
http://hdl.handle.net/2066/207922
http://hdl.handle.net/2066/207922
Autor:
Ambrogioni, L., Güçlü, U., Berezutskaya, Y., Borne, E.W.P. van den, Güçlütürk, Y., Hinne, M., Maris, E.G.G., Gerven, M.A.J. van, Chaudhuri, K., Sugiyama, M.
Publikováno v:
Scopus-Elsevier
Chaudhuri, K.; Sugiyama, M. (ed.), Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) 2019, 777-786. [S.l.] : [S.n.]
STARTPAGE=777;ENDPAGE=786;ISSN=2640-3498;TITLE=Chaudhuri, K.; Sugiyama, M. (ed.), Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) 2019
Chaudhuri, K.; Sugiyama, M. (ed.), Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) 2019, pp. 777-786
CIÊNCIAVITAE
Chaudhuri, K.; Sugiyama, M. (ed.), Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) 2019, 777-786. [S.l.] : [S.n.]
STARTPAGE=777;ENDPAGE=786;ISSN=2640-3498;TITLE=Chaudhuri, K.; Sugiyama, M. (ed.), Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) 2019
Chaudhuri, K.; Sugiyama, M. (ed.), Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) 2019, pp. 777-786
CIÊNCIAVITAE
In this paper, we introduce a new form of amortized variational inference by using the forward KL divergence in a joint-contrastive variational loss. The resulting forward amortized variational inference is a likelihood-free method as its gradient ca
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::81af89b7371d9c4247d39551922584f1
Publikováno v:
Psychophysiology, 52, 440-443
Psychophysiology, 52, 3, pp. 440-443
Psychophysiology, 52, 3, pp. 440-443
Contains fulltext : 138699pre.pdf (Author’s version preprint ) (Open Access) When making statistical comparisons, the temporal dimension of the EEG signal introduces problems. Guthrie and Buchwald (1991) proposed a formally correct statistical appr
Autor:
Ambrogioni, L., Berezutskaya, Y., Güçlü, U., Borne, E.W.P. van den, Güçlütürk, Y., Gerven, M.A.J. van, Maris, E.G.G.
Publikováno v:
Workshop on Meta-Learning (MetaLearn 2017)-Neural Information Processing Systems (NIPS 2017), pp. 1-5
Workshop on Meta-Learning (MetaLearn 2017)-Neural Information Processing Systems (NIPS 2017), 1-5. [S.l.] : [S.n.]
STARTPAGE=1;ENDPAGE=5;TITLE=Workshop on Meta-Learning (MetaLearn 2017)-Neural Information Processing Systems (NIPS 2017)
Workshop on Meta-Learning (MetaLearn 2017)-Neural Information Processing Systems (NIPS 2017), 1-5. [S.l.] : [S.n.]
STARTPAGE=1;ENDPAGE=5;TITLE=Workshop on Meta-Learning (MetaLearn 2017)-Neural Information Processing Systems (NIPS 2017)
Contains fulltext : 180405.pdf (Author’s version preprint ) (Open Access) In this paper we demonstrate that a recurrent neural network meta-trained on an ensemble of arbitrary classification tasks can be used as an approximation of the Bayes optima
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::3ffb0909213c7747754fca62ee90afe0
https://hdl.handle.net/2066/180405
https://hdl.handle.net/2066/180405
Publikováno v:
2017 Neural Information Processing Systems (NIPS): Machine Learning for Creativity and Design Workshop (December 8, 2017), 1-3. [S.l.] : [S.n.]
STARTPAGE=1;ENDPAGE=3;TITLE=2017 Neural Information Processing Systems (NIPS): Machine Learning for Creativity and Design Workshop (December 8, 2017)
2017 Neural Information Processing Systems (NIPS): Machine Learning for Creativity and Design Workshop (December 8, 2017), pp. 1-3
STARTPAGE=1;ENDPAGE=3;TITLE=2017 Neural Information Processing Systems (NIPS): Machine Learning for Creativity and Design Workshop (December 8, 2017)
2017 Neural Information Processing Systems (NIPS): Machine Learning for Creativity and Design Workshop (December 8, 2017), pp. 1-3
Contains fulltext : 179506.pdf (Publisher’s version ) (Open Access) Here, we propose a new approach for modeling conditional probability distributions of polyphonic music by combining WaveNET and CRF-RNN variants, and show that this approach beats
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::3e8036a9f36742039504354fb91db385
https://hdl.handle.net/2066/179506
https://hdl.handle.net/2066/179506
Publikováno v:
iRODS User Group Meeting 2017 Proceedings, 13-22. Chapel Hill, NC : iRODS Consortium
STARTPAGE=13;ENDPAGE=22;TITLE=iRODS User Group Meeting 2017 Proceedings
iRODS User Group Meeting 2017 Proceedings, pp. 13-22
STARTPAGE=13;ENDPAGE=22;TITLE=iRODS User Group Meeting 2017 Proceedings
iRODS User Group Meeting 2017 Proceedings, pp. 13-22
Item does not contain fulltext Research Data Management (RDM) aims to improve the efficiency and transparency in the scientific process and to fullfil the requirements of the funding agencies and (local) regulations. Failures in reproducing some key
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::25ee504c60302484ba091416a1bf20bd
https://hdl.handle.net/2066/180894
https://hdl.handle.net/2066/180894
Autor:
Ambrogioni, L., Hinne, M., Gerven, M.A.J. van, Maris, E.G.G., Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R.
Publikováno v:
Guyon, I.; Luxburg, U.V.; Bengio, S. (ed.), Advances in Neural Information Processing Systems 30 (NIPS 2017), pp. 951-960
Guyon, I.; Luxburg, U.V.; Bengio, S. (ed.), Advances in Neural Information Processing Systems 30 (NIPS 2017), 951-960. New York, NY : Curran Associates
STARTPAGE=951;ENDPAGE=960;TITLE=Guyon, I.; Luxburg, U.V.; Bengio, S. (ed.), Advances in Neural Information Processing Systems 30 (NIPS 2017)
Guyon, I.; Luxburg, U.V.; Bengio, S. (ed.), Advances in Neural Information Processing Systems 30 (NIPS 2017), 951-960. New York, NY : Curran Associates
STARTPAGE=951;ENDPAGE=960;TITLE=Guyon, I.; Luxburg, U.V.; Bengio, S. (ed.), Advances in Neural Information Processing Systems 30 (NIPS 2017)
Contains fulltext : 179527.pdf (Publisher’s version ) (Open Access) 31st Conference on Neural Information Processing Systems (NIPS 2017) (Long Beach, CA, USA, December 4 - 9, 2017)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::8ae8e5d4b7493e4786b489f18c9c62fc
https://hdl.handle.net/2066/179527
https://hdl.handle.net/2066/179527