Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Mario Daberkow"'
Autor:
Michael Pohst, Mario Daberkow
Publikováno v:
Journal of Number Theory. 69(2):213-230
Let k be an algebraic number field. We describe a procedure for computing the Hilbert class field Γ ( k ) of k , i.e., the maximal abelian extension unramified at all places. In the first part of the paper we outline the underlying theory and in the
Publikováno v:
Experimental Mathematics. 7:121-124
The algebraic number fields of degree 6 having Galois group S5 and minimum discriminant are determined for signatures (0, 3), (2,2) and (6,0). The fields F0, F2, F6 are generated by roots of f0(t) = t6 3t4 + 2t3 + 6t2 + 1, f2(t) = t6 – 2t4 + 12t3
Autor:
Michael Pohst, Mario Daberkow
Publikováno v:
Mathematics of Computation. 65:319-329
Let F \mathcal F be an algebraic number field and E \mathcal E a quadratic extension with E = F ( μ ) \mathcal E=\mathcal F(\sqrt {\mu }) . We describe a minimal set of elements for generating the integral elements o E o_{\mathcal E} of E \mathcal E
Autor:
Mario Daberkow
Publikováno v:
Strukturumbruch in der Finanzdienstleistungsindustrie ISBN: 9783834906250
Im Rahmen dieses Kapitels wird die Disaggregation von Banken im Hinblick auf die Abwicklungsprozesse analysiert. Es wird dargestellt, welche strategischen Alternativen eine Bank bei der Gestaltung der Abwicklung hat, welchen Weg die Deutsche Postbank
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::591e41347a2d72970d0633c1984e7555
https://doi.org/10.1007/978-3-8349-9575-9_6
https://doi.org/10.1007/978-3-8349-9575-9_6
Autor:
Mario Daberkow
Publikováno v:
Management by Mathematics ISBN: 9783322907899
Es gibt in der Mathematik Prinzipien, die sich als Handlungsgebote sehr gut im Management anwenden lassen. In meiner Tatigkeit bei der Postbank profitiere ich ganz besonders von den folgenden funf.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f80b819de9a7256af20676f1a9fbcae9
https://doi.org/10.1007/978-3-322-90788-2_3
https://doi.org/10.1007/978-3-322-90788-2_3
Autor:
Michael Pohst, Mario Daberkow
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783540615811
ANTS
ANTS
In the sequel of our recent work on relative extensions of algebraic number fields [DaPo95] we extend the methods presented there for computing Hilbert class fields of degree three over totally real cubic fields. This is the first progress in arithme
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::192023cc0d77d6be40502184c70523ea
https://doi.org/10.1007/3-540-61581-4_42
https://doi.org/10.1007/3-540-61581-4_42
Autor:
Andreas Weber, Mario Daberkow
Publikováno v:
Design and Implementation of Symbolic Computation Systems ISBN: 9783540616979
DISCO
DISCO
We describe a database for number fields that has been integrated into the algebraic number theory system Kant. The database gives efficient access to the tables of number fields that have been computed during the last years and is easily extended.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::960c98d88ef2d9bff61446c9b19c37cc
https://doi.org/10.1007/3-540-61697-7_33
https://doi.org/10.1007/3-540-61697-7_33
Autor:
Michael Pohst, Mario Daberkow
Publikováno v:
ISSAC
Publikováno v:
Bankmagazin. 57:44-44
Autor:
Mario Daberkow
Publikováno v:
Journal of Symbolic Computation. (1-2):113-131
Let k be an algebraic number field containing a primitive m th root of unity. An extension K=k([m ] μ) of k with μ∈k is called a Kummer extension. These extensions have been studied extensively in the past and they play an important role in class