Zobrazeno 1 - 10
of 103
pro vyhledávání: '"Marino, Lucia"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bonacini, Paola, Marino, Lucia
Publikováno v:
Applicable Analysis and Discrete Mathematics, 2020 Apr 01. 14(1), 183-197.
Externí odkaz:
https://www.jstor.org/stable/26964953
Autor:
Bonacini, Paola, Marino, Lucia
Let $\Sigma=(X,\mathcal B)$ a $4$-cycle system of order $v=1+8k$. A $c$-colouring of type $s$ is a map $\phi\colon \mathcal B\rightarrow \mathcal C$, with $C$ set of colours, such that exactly $c$ colours are used and for every vertex $x$ all the blo
Externí odkaz:
http://arxiv.org/abs/1406.5454
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Let G = (V, E) be a multigraph without loops and for any x {\in}V let E(x) be the set of edges of G incident to x. A homogeneous edge-coloring of G is an assignment of an integer m >= 2 and a coloring c:E {\to} S of the edges of Gsuchthat|S| = mandfo
Externí odkaz:
http://arxiv.org/abs/1203.4531
Autor:
Bonacini, Paola, Marino, Lucia
Let X be a zero-dimensional scheme in P1 \times P1. Then X has a minimal free resolution of length 2 if and only if X is ACM. In this paper we determine a class of reduced schemes whose resolutions, similarly to the ACM case, can be obtained by their
Externí odkaz:
http://arxiv.org/abs/1108.4007
Autor:
Bonacini, Paola, Marino, Lucia
Let $Q = \mathbb P^1 x \mathbb P^1$ and let $X\subset Q$ be a 0-dimensional scheme. This paper is a first step towards the characterization of Hilbert functions of 0- dimensional schemes in $Q$. In particular we show how, under some conditions on $X$
Externí odkaz:
http://arxiv.org/abs/1009.4095
Autor:
Bonacini, Paola, Marino, Lucia
In this paper we determine a class of admissible matrices which are the Hilbert functions of some 0-dimensional schemes in $\mathbb P^1\times\mathbb P^1$.
Externí odkaz:
http://arxiv.org/abs/1009.4059
In this paper we extend the definition of a separator of a point P in P^n to a fat point P of multiplicity m. The key idea in our definition is to compare the fat point schemes Z = m_1P_1 + ... + m_iP_i + .... + m_sP_s in P^n and Z' = m_1P_1 + ... +
Externí odkaz:
http://arxiv.org/abs/0902.3030
Autor:
Bonacini, Paola1 (AUTHOR) bonacini@dmi.unict.it, Marino, Lucia1 (AUTHOR)
Publikováno v:
Journal of Combinatorial Designs. Jul2022, Vol. 30 Issue 7, p497-514. 18p.