Zobrazeno 1 - 10
of 64
pro vyhledávání: '"Marino, Greta"'
We study a nonlocal Cahn-Hilliard model for a multicomponent mixture with cross-diffusion effects and degenerate mobility. The nonlocality is described by means of a symmetric singular kernel. We define a notion of weak solution adapted to possible d
Externí odkaz:
http://arxiv.org/abs/2408.07396
We study some properties of a multi-species degenerate Ginzburg-Landau energy and its relation to a cross-diffusion Cahn-Hilliard system. The model is motivated by multicomponent mixtures where crossdiffusion effects between the different species are
Externí odkaz:
http://arxiv.org/abs/2307.05985
Autor:
Marino, Greta, Mosconi, Sunra
We prove local Lipschitz regularity for local minimiser of \[ W^{1,1}(\Omega)\ni v\mapsto \int_\Omega F(Dv)\, dx \] where $\Omega\subseteq {\mathbb R}^N$, $N\ge 2$ and $F:{\mathbb R}^N\to {\mathbb R}$ is a quasiuniformly convex integrand in the sense
Externí odkaz:
http://arxiv.org/abs/2304.00657
We introduce a free boundary model to example the effect of vesicle transport onto neurite growth. It consists of systems of drift-diffusion equations describing the evolution of the density of antero- and retrograde vesicles in each neurite coupled
Externí odkaz:
http://arxiv.org/abs/2302.00527
Boundary value problems for second-order elliptic equations in divergence form, whose nonlinearity is governed by a convex function of non-necessarily power type, are considered. The global boundedness of their solutions is established under boundary
Externí odkaz:
http://arxiv.org/abs/2207.07323
Multiple solutions for nonlinear boundary value problems of Kirchhoff type on a double phase setting
This paper deals with some classes of Kirchhoff type problems on a double phase setting and with nonlinear boundary conditions. Under general assumptions, we provide multiplicity results for such problems in the case when the perturbations exhibit a
Externí odkaz:
http://arxiv.org/abs/2112.08135
Publikováno v:
In Nonlinear Analysis April 2024 241
We study evolution equations of drift-diffusion type when various parameters are random. Motivated by applications in pedestrian dynamics, we focus on the case when the total mass is, due to boundary or reaction terms, not conserved. After providing
Externí odkaz:
http://arxiv.org/abs/2105.06334
In this paper we study double phase problems with nonlinear boundary condition and gradient dependence. Under quite general assumptions we prove existence results for such problems where the perturbations satisfy a suitable behavior in the origin and
Externí odkaz:
http://arxiv.org/abs/2012.03302
The aim of this article is to study a Cahn-Hilliard model for a multicomponent mixture with cross-diffusion effects, degenerate mobility and where only one of the species does separate from the others. We define a notion of weak solution adapted to p
Externí odkaz:
http://arxiv.org/abs/2007.00989