Zobrazeno 1 - 10
of 77
pro vyhledávání: '"Marinka, Zitnik"'
Publikováno v:
Scientific Data, Vol 10, Iss 1, Pp 1-18 (2023)
Abstract As explanations are increasingly used to understand the behavior of graph neural networks (GNNs), evaluating the quality and reliability of GNN explanations is crucial. However, assessing the quality of GNN explanations is challenging as exi
Externí odkaz:
https://doaj.org/article/993af0bc7ead4318aa8097ae16a3be21
Publikováno v:
Scientific Data, Vol 10, Iss 1, Pp 1-16 (2023)
Measurement(s) knowledge graph • Relation Code • textual entity Technology Type(s) machine learning • computational modeling technique
Externí odkaz:
https://doaj.org/article/a173e11db88c48ca96c21a86ff2deee1
Autor:
Hossein Honarvar, PhD, Chirag Agarwal, PhD, Sulaiman Somani, MD, Akhil Vaid, MD, Joshua Lampert, MD, Tingyi Wanyan, PhD, Vivek Y. Reddy, MD, Girish N. Nadkarni, MD, Riccardo Miotto, PhD, Marinka Zitnik, PhD, Fei Wang, PhD, Benjamin S. Glicksberg, PhD
Publikováno v:
Cardiovascular Digital Health Journal, Vol 3, Iss 5, Pp 220-231 (2022)
Background: Electrocardiogram (ECG) deep learning (DL) has promise to improve the outcomes of patients with cardiovascular abnormalities. In ECG DL, researchers often use convolutional neural networks (CNNs) and traditionally use the full duration of
Externí odkaz:
https://doaj.org/article/7106b3c922994d84a741ddc460870603
Publikováno v:
Informatics in Medicine Unlocked, Vol 36, Iss , Pp 101139- (2023)
Background and objectives: Bidirectional Encoder Representations from Transformers (BERT) word embedding models have been successfully used for many natural language processing (NLP) tasks, including medical named entity recognition. However, there a
Externí odkaz:
https://doaj.org/article/beb89fff45354be983345db4ca5c25f0
Publikováno v:
Nature Communications, Vol 12, Iss 1, Pp 1-14 (2021)
With the rise in number of eukaryotic species being fully sequenced, large scale phylogenetic profiling can give insights on gene function, Here, the authors describe a machine-learning approach that integrates co-evolution across eukaryotic clades t
Externí odkaz:
https://doaj.org/article/59ff6a7933cf40ff80afbe2c5b1265df
Autor:
Sheng Wang, Angela Oliveira Pisco, Aaron McGeever, Maria Brbic, Marinka Zitnik, Spyros Darmanis, Jure Leskovec, Jim Karkanias, Russ B. Altman
Publikováno v:
Nature Communications, Vol 12, Iss 1, Pp 1-11 (2021)
Classifying cells into unseen cell types remains challenging in scRNA-seq analysis. Here we show that Cell Ontology enables an accurate classification of unseen cell types through considering the cell type relationships in the Cell Ontology graph.
Externí odkaz:
https://doaj.org/article/1d09fe5933a6428fb050655243e85aa0
Autor:
J.J. Patten, Patrick T. Keiser, Deisy Morselli-Gysi, Giulia Menichetti, Hiroyuki Mori, Callie J. Donahue, Xiao Gan, Italo do Valle, Kathleen Geoghegan-Barek, Manu Anantpadma, RuthMabel Boytz, Jacob L. Berrigan, Sarah H. Stubbs, Tess Ayazika, Colin O’Leary, Sallieu Jalloh, Florence Wagner, Seyoum Ayehunie, Stephen J. Elledge, Deborah Anderson, Joseph Loscalzo, Marinka Zitnik, Suryaram Gummuluru, Mark N. Namchuk, Albert-László Barabási, Robert A. Davey
Publikováno v:
iScience, Vol 25, Iss 9, Pp 104925- (2022)
Summary: Pharmacologically active compounds with known biological targets were evaluated for inhibition of SARS-CoV-2 infection in cell and tissue models to help identify potent classes of active small molecules and to better understand host-virus in
Externí odkaz:
https://doaj.org/article/068bfd3f57e5455390b1fab422a6998a
Publikováno v:
Nature Communications, Vol 12, Iss 1, Pp 1-15 (2021)
Most diseases disrupt multiple proteins, and drugs treat such diseases by restoring the functions of the disrupted proteins; how drugs restore these functions, however, is often unknown. Here, the authors develop the multiscale interactome, a powerfu
Externí odkaz:
https://doaj.org/article/28f8ca7de94d4f08a6693d3cd37dc25a
Autor:
Ryan T. Scott, Lauren M. Sanders, Erik L. Antonsen, Jaden J. A. Hastings, Seung-min Park, Graham Mackintosh, Robert J. Reynolds, Adrienne L. Hoarfrost, Aenor Sawyer, Casey S. Greene, Benjamin S. Glicksberg, Corey A. Theriot, Daniel C. Berrios, Jack Miller, Joel Babdor, Richard Barker, Sergio E. Baranzini, Afshin Beheshti, Stuart Chalk, Guillermo M. Delgado-Aparicio, Melissa Haendel, Arif A. Hamid, Philip Heller, Daniel Jamieson, Katelyn J. Jarvis, John Kalantari, Kia Khezeli, Svetlana V. Komarova, Matthieu Komorowski, Prachi Kothiyal, Ashish Mahabal, Uri Manor, Hector Garcia Martin, Christopher E. Mason, Mona Matar, George I. Mias, Jerry G. Myers, Charlotte Nelson, Jonathan Oribello, Patricia Parsons-Wingerter, R. K. Prabhu, Amina Ann Qutub, Jon Rask, Amanda Saravia-Butler, Suchi Saria, Nitin Kumar Singh, Michael Snyder, Frank Soboczenski, Karthik Soman, David Van Valen, Kasthuri Venkateswaran, Liz Warren, Liz Worthey, Jason H. Yang, Marinka Zitnik, Sylvain V. Costes
Publikováno v:
Nature Machine Intelligence. 5:196-207
Autor:
Lauren M. Sanders, Ryan T. Scott, Jason H. Yang, Amina Ann Qutub, Hector Garcia Martin, Daniel C. Berrios, Jaden J. A. Hastings, Jon Rask, Graham Mackintosh, Adrienne L. Hoarfrost, Stuart Chalk, John Kalantari, Kia Khezeli, Erik L. Antonsen, Joel Babdor, Richard Barker, Sergio E. Baranzini, Afshin Beheshti, Guillermo M. Delgado-Aparicio, Benjamin S. Glicksberg, Casey S. Greene, Melissa Haendel, Arif A. Hamid, Philip Heller, Daniel Jamieson, Katelyn J. Jarvis, Svetlana V. Komarova, Matthieu Komorowski, Prachi Kothiyal, Ashish Mahabal, Uri Manor, Christopher E. Mason, Mona Matar, George I. Mias, Jack Miller, Jerry G. Myers, Charlotte Nelson, Jonathan Oribello, Seung-min Park, Patricia Parsons-Wingerter, R. K. Prabhu, Robert J. Reynolds, Amanda Saravia-Butler, Suchi Saria, Aenor Sawyer, Nitin Kumar Singh, Michael Snyder, Frank Soboczenski, Karthik Soman, Corey A. Theriot, David Van Valen, Kasthuri Venkateswaran, Liz Warren, Liz Worthey, Marinka Zitnik, Sylvain V. Costes
Publikováno v:
Nature Machine Intelligence. 5:208-219