Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Marinho, Leandro B."'
Autor:
Marinho, Leandro B., Nascimento, Navar de M.M., Souza, João Wellington M., Gurgel, Mateus Valentim, Rebouças Filho, Pedro P., de Albuquerque, Victor Hugo C.
Publikováno v:
In Future Generation Computer Systems August 2019 97:564-577
Publikováno v:
In Computers in Industry May 2019 107:1-10
Autor:
Holanda, Gabriel B., Souza, João Wellington M., Lima, Daniel A., Marinho, Leandro B., Girão, Anaxágoras M., Bezerra Frota, João Batista, Rebouças Filho, Pedro P.
Publikováno v:
In Measurement May 2018 120:150-168
Autor:
Marinho, Leandro B., Rebouças Filho, Pedro P., Almeida, Jefferson S., Souza, João Wellington M., Souza Junior, Amauri H., de Albuquerque, Victor Hugo C.
Publikováno v:
In Computers and Electrical Engineering May 2018 68:26-43
Autor:
Marinho, Leandro B., Almeida, Jefferson S., Souza, João Wellington M., Albuquerque, Victor Hugo C., Rebouças Filho, Pedro P.
Publikováno v:
In Expert Systems With Applications 15 April 2017 72:1-17
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Rebouças Filho, Pedro P., Rebouças, Elizângela de S., Marinho, Leandro B., Sarmento, Róger M., Tavares, João Manuel R.S., de Albuquerque, Victor Hugo C.
Publikováno v:
In Pattern Recognition Letters 15 July 2017 94:211-218
Autor:
Nóbrega, Caio B., Marinho, Leandro B.
Publikováno v:
Journal of Information and Data Management; v. 5, n. 1 (2014): JOURNAL OF INFORMATION AND DATA MANAGEMENT; 94
Journal of Information and Data Management; Vol 5 No 1 (2014): JOURNAL OF INFORMATION AND DATA MANAGEMENT; 94
Journal of Information and Data Management; v. 5 n. 1 (2014): JOURNAL OF INFORMATION AND DATA MANAGEMENT; 94
Journal of Information and Data Management; Vol 5 No 1 (2014): JOURNAL OF INFORMATION AND DATA MANAGEMENT; 94
Journal of Information and Data Management; v. 5 n. 1 (2014): JOURNAL OF INFORMATION AND DATA MANAGEMENT; 94
Matrix Factorization (MF) has become the predominant technique in recommender systems. The model parameters are usually learned by means of numerical methods, such as gradient descent. The learning rate of gradient descent is typically set to lower v
Publikováno v:
International Society for Music Information Retrieval Conference Proceedings; 2017, p414-420, 7p