Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Marielle Malfante"'
Autor:
Romain Bailly, Marielle Malfante, Cédric Allier, Chiara Paviolo, Lamya Ghenim, Kiran Padmanabhan, Sabine Bardin, Jérôme Mars
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-12 (2024)
Abstract The prediction of pathological changes on single cell behaviour is a challenging task for deep learning models. Indeed, in self-supervised learning methods, no prior labels are used for the training and all of the information for event predi
Externí odkaz:
https://doaj.org/article/713270a8224f4a1f8b2948288b411b09
Autor:
Jannes Münchmeyer, Sophie Giffard-Roisin, Marielle Malfante, William Frank, Piero Poli, David Marsan, Anne Socquet
Publikováno v:
Seismica, Vol 3, Iss 1 (2024)
Documenting the interplay between slow deformation and seismic ruptures is essential to understand the physics of earthquakes nucleation. However, slow deformation is often difficult to detect and characterize. The most pervasive seismic markers of s
Externí odkaz:
https://doaj.org/article/bf1ad9eb198645499fdb062f7cc1dcbe
Autor:
Antonio Augusto Teixeira Peixoto, Carlos Alexandre Rolim Fernandes, Pablo Eduardo Espinoza Lara, Adolfo Inza, Jerome I Mars, Jean-Philippe Metaxian, Mauro Dalla Mura, Marielle Malfante
Publikováno v:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 14, Pp 4517-4529 (2021)
This article proposes a supervised tensor-based learning framework for classifying volcano-seismic events from signals recorded at the Ubinas volcano, in Peru, during a period of great activity in 2009. The proposed method is fully tensorial, as it i
Externí odkaz:
https://doaj.org/article/6e396025c32043e38b762bf7e8d7c5d7
Autor:
Pablo Eduardo Espinoza Lara, Carlos Alexandre Rolim Fernandes, Adolfo Inza, Jerome I. Mars, Jean-Philippe Metaxian, Mauro Dalla Mura, Marielle Malfante
Publikováno v:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 13, Pp 1322-1331 (2020)
This article proposes the design of an automatic classifier using the empirical mode decomposition (EMD) along with machine learning techniques for identifying the five most important types of events of the Ubinas volcano, the most active volcano in
Externí odkaz:
https://doaj.org/article/cc431d801db64b19aa57d7bb89b3ddd3
Publikováno v:
Sensors, Vol 23, Iss 3, p 1613 (2023)
Occupancy grid maps are widely used as an environment model that allows the fusion of different range sensor technologies in real-time for robotics applications. In an autonomous vehicle setting, occupancy grid maps are especially useful for their ab
Externí odkaz:
https://doaj.org/article/e5d6094fb7314bb4a2a24e9d82ec58d3
Subduction megathrusts are the largest earthquakes occuring worldwide. Yet the generation of large subduction earthquakes is still poorly understood. Recent research revealed that aseismic deformation in the form of slow slip events (SSEs) might play
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2666ad45140f7797aa674072e92b1410
https://doi.org/10.5194/egusphere-egu23-6369
https://doi.org/10.5194/egusphere-egu23-6369
Autor:
Jean-Christophe Komorowski, Jean-Bernard de Chabalier, Alexis Falcin, Roberto Moretti, G. Ucciani, Arnaud Lemarchand, Jean-Philippe Métaxian, Jerome Mars, Céline Dessert, François Beauducel, Jean-Marie Saurel, Eléonore Stutzmann, Marielle Malfante, Arnaud Burtin
Publikováno v:
Journal of Volcanology and Geothermal Research
Journal of Volcanology and Geothermal Research, 2021, 411, pp.107151. ⟨10.1016/j.jvolgeores.2020.107151⟩
Journal of Volcanology and Geothermal Research, Elsevier, 2021, 411, pp.107151. ⟨10.1016/j.jvolgeores.2020.107151⟩
Journal of Volcanology and Geothermal Research, 2021, 411, pp.107151. ⟨10.1016/j.jvolgeores.2020.107151⟩
Journal of Volcanology and Geothermal Research, Elsevier, 2021, 411, pp.107151. ⟨10.1016/j.jvolgeores.2020.107151⟩
International audience; The classification of seismo-volcanic signals is performed manually at La Soufrière Volcano, which is time consuming and can be biased by subjectivity of the operator. We propose here a machine-learning-based model for classi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::467ed38e97d9cec8df5f542edeb8fc8e
https://hal.science/hal-03113808
https://hal.science/hal-03113808
Autor:
Adolfo Inza, Pablo Eduardo Espinoza Lara, Carlos Alexandre, Jean Philippe Metaxian, Jerome Mars, Marielle Malfante, Mauro Dalla Mura
Publikováno v:
American Geophysical Union, Fall Meeting 2020
American Geophysical Union, Fall Meeting 2020, Dec 2020, San Francisco, United States
HAL
American Geophysical Union, Fall Meeting 2020, Dec 2020, San Francisco, United States
HAL
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::859b8c9c2fcc605dc550a78cce43741f
https://hal.archives-ouvertes.fr/hal-03112554
https://hal.archives-ouvertes.fr/hal-03112554
Autor:
Jerome Mars, Pablo Eduardo Espinoza Lara, Carlos Alexandre Rolim Fernandes, Marielle Malfante, Jean-Philippe Metaxian, Mauro Dalla Mura, Adolfo Inza
Publikováno v:
IGP-Institucional
Instituto Geofísico del Perú
instacron:IGP
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 13, Pp 1322-1331 (2020)
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, IEEE, 2020, 13, pp.1322-1331. ⟨10.1109/JSTARS.2020.2982714⟩
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, pp.1322-1331. ⟨10.1109/JSTARS.2020.2982714⟩
Instituto Geofísico del Perú
instacron:IGP
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 13, Pp 1322-1331 (2020)
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, IEEE, 2020, 13, pp.1322-1331. ⟨10.1109/JSTARS.2020.2982714⟩
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, pp.1322-1331. ⟨10.1109/JSTARS.2020.2982714⟩
International audience; This article proposes the design of an automatic classifier using the empirical mode decomposition (EMD) along with machine learning techniques for identifying the five most important types of events of the Ubinas volcano, the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f24bd684b70fceca7704b5f0d94cd76a
Publikováno v:
Acoustics 2016-171st Meeting of The Acoustical Society of America
Acoustics 2016-171st Meeting of The Acoustical Society of America, May 2016, Salt Lake City, United States. pp.2115
Journal of the Acoustical Society of America
Journal of the Acoustical Society of America, Acoustical Society of America, 2018, 143 (5), pp.2834-2846. ⟨10.1121/1.5036628⟩
Acoustics 2016-171st Meeting of The Acoustical Society of America, May 2016, Salt Lake City, United States. pp.2115
Journal of the Acoustical Society of America
Journal of the Acoustical Society of America, Acoustical Society of America, 2018, 143 (5), pp.2834-2846. ⟨10.1121/1.5036628⟩
The work presented in this paper focuses on the use of acoustic systems for passive acoustic monitoring of ocean vitality for fish populations. Specifically, it focuses on the use of acoustic systems for passive acoustic monitoring of ocean vitality