Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Mariel Paula Kuna"'
Publikováno v:
Opuscula Mathematica, Vol 40, Iss 4, Pp 405-425 (2020)
We establish the existence and multiplicity of solutions for some boundary value problems on time scales with a \(\varphi\)-Laplacian operator. For this purpose, we employ the concept of lower and upper solutions and the Leray-Schauder degree. The re
Externí odkaz:
https://doaj.org/article/9bbd07c094874e66b5ad8fa11211ff00
Autor:
Pablo Amster, Mariel Paula Kuna
Publikováno v:
Electronic Journal of Differential Equations, Vol 2012, Iss 209,, Pp 1-13 (2012)
For a vector function $u:mathbb{R} o mathbb{R}^N $ we consider the system $$displaylines{ u''(t)+ abla G(u(t))= p(t)cr u(t)=u(t+T), }$$ where $G: mathbb{R}^N o mathbb{R}$ is a $C^1$ function. We are interested in finding all possible T-periodic forci
Externí odkaz:
https://doaj.org/article/6317b10f79d44f39b4a36e820b804aed
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2020, Iss 62, Pp 1-11 (2020)
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
We study some properties of the range of the relativistic pendulum operator $\mathcal P$, that is, the set of possible continuous $T$-periodic forcing terms $p$ for which the equation $\mathcal P x=p$ admits a $T$-periodic solution over a $T$-periodi
Publikováno v:
Communications on Pure and Applied Analysis. 21:2723
Using a Lyapunov-Krasovskii functional, new results concerning the global stability, boundedness of solutions, existence and non-existence of \begin{document}$ T $\end{document}-periodic solutions for a kind of delayed equation for a \begin{document}
A coupled Gompertz-like system of delay differential equations is considered. We prove the existence of T-periodic solutions under resonance assuming a Lazer–Leach type condition. Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Cien
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c55c8e4ee916bd9147a32ffd5becf89f
https://www.sciencedirect.com/science/article/pii/S0893965918300788
https://www.sciencedirect.com/science/article/pii/S0893965918300788
Autor:
Pablo Amster, Mariel Paula Kuna
We prove the existence of multiple solutions for a second order ODE system under radiation boundary conditions. The proof is based on the degree computation of I- K, where K is an appropriate fixed point operator. Under a suitable asymptotic Hartman-
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::da6ba3f015e0a7d7a8d5737e79c9b975
http://link.springer.com/article/10.1007/s00605-017-1098-y
http://link.springer.com/article/10.1007/s00605-017-1098-y
Autor:
Mariel Paula Kuna, Pablo Amster
Publikováno v:
Topol. Methods Nonlinear Anal. 54, no. 1 (2019), 233-246
A second order ordinary differential equation with a superlinear term $g(x,u)$ under radiation boundary conditions is studied. Using a shooting argument, all the results obtained in the previous work \cite{AKR3} for a Painleve II equation are extende
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c40fcd111feab2f213a1acbbf8bdc435
http://arxiv.org/abs/1805.00895
http://arxiv.org/abs/1805.00895
Autor:
Pablo Amster, Mariel Paula Kuna
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2017, Iss 37, Pp 1-11 (2017)
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
A second order ordinary differential equation with a superlinear term is studied under radiation boundary conditions. Employing the variational method and an accurate shooting-type argument, we prove the existence of at least three or five solutions,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::402e495ca00d0da88394abc32dd23fc5
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=5260
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=5260