Zobrazeno 1 - 10
of 100
pro vyhledávání: '"Marie-Laurence Mazure"'
Autor:
Marie-Laurence Mazure
Publikováno v:
BIT Numerical Mathematics
BIT Numerical Mathematics, 2020, 60, pp.687-714. ⟨10.1007/s10543-019-00795-y⟩
BIT Numerical Mathematics, Springer Verlag, 2020, 60, pp.687-714. ⟨10.1007/s10543-019-00795-y⟩
BIT Numerical Mathematics, 2020, 60, pp.687-714. ⟨10.1007/s10543-019-00795-y⟩
BIT Numerical Mathematics, Springer Verlag, 2020, 60, pp.687-714. ⟨10.1007/s10543-019-00795-y⟩
International audience; By piecewise Chebyshevian splines we mean splines with pieces taken from different Extended Chebyshev spaces all of the same dimension, and with connection matrices at the knots. Within this very large and crucial class of spl
Publikováno v:
Numerical Algorithms
Numerical Algorithms, Springer Verlag, 2021, 88, pp.1183-1214. ⟨10.1007/s11075-021-01071-3⟩
Numerical Algorithms, 2021, 88, pp.1183-1214. ⟨10.1007/s11075-021-01071-3⟩
Numerical Algorithms, Springer Verlag, 2021, 88, pp.1183-1214. ⟨10.1007/s11075-021-01071-3⟩
Numerical Algorithms, 2021, 88, pp.1183-1214. ⟨10.1007/s11075-021-01071-3⟩
International audience; Based on the blossoming theory, in this work we develop a new method for deriving Hermite-Padé approximants of certain hypergeometric series. Its general principle consists in building identities generalising the Hermite iden
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8432429b03d9d3b1541fed6aae0f9d55
https://hal.archives-ouvertes.fr/hal-02996917/file/RMLPade.pdf
https://hal.archives-ouvertes.fr/hal-02996917/file/RMLPade.pdf
Publikováno v:
Applied Numerical Mathematics
Applied Numerical Mathematics, Elsevier, 2021, 165, pp.553-577. ⟨10.1016/j.apnum.2021.03.009⟩
Applied Numerical Mathematics, 2021, 165, pp.553-577. ⟨10.1016/j.apnum.2021.03.009⟩
Applied Numerical Mathematics, Elsevier, 2021, 165, pp.553-577. ⟨10.1016/j.apnum.2021.03.009⟩
Applied Numerical Mathematics, 2021, 165, pp.553-577. ⟨10.1016/j.apnum.2021.03.009⟩
We establish the uniform convergence of the control polygons generated by repeated degree elevation of q-Bezier curves (i.e., polynomial curves represented in the q-Bernstein bases of increasing degrees) on [ 0 , 1 ] , q > 1 , to a piecewise linear c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3f7f24139cc1f9a3eb2d9253b0e7eb3e
https://hal.archives-ouvertes.fr/hal-03040560
https://hal.archives-ouvertes.fr/hal-03040560
Publikováno v:
Applied Mathematics Letters
Applied Mathematics Letters, Elsevier, 2020, 109, pp.106529. ⟨10.1016/j.aml.2020.106529⟩
Applied Mathematics Letters, 2020, 109, pp.106529. ⟨10.1016/j.aml.2020.106529⟩
Applied Mathematics Letters, Elsevier, 2020, 109, pp.106529. ⟨10.1016/j.aml.2020.106529⟩
Applied Mathematics Letters, 2020, 109, pp.106529. ⟨10.1016/j.aml.2020.106529⟩
International audience; Degree elevation is a typical corner-cutting algorithm. It refers to the process transforming control polygons when embedding a polynomial space of some degree into any polynomial space of higher degree.Dimension elevation sim
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a3b2e958ae690b931f595fcc8b253de7
https://hal.archives-ouvertes.fr/hal-02482422
https://hal.archives-ouvertes.fr/hal-02482422
Publikováno v:
Computer Aided Geometric Design
Computer Aided Geometric Design, Elsevier, 2020, 79, pp.101838. ⟨10.1016/j.cagd.2020.101838⟩
Computer Aided Geometric Design, 2020, 79, pp.101838. ⟨10.1016/j.cagd.2020.101838⟩
Computer Aided Geometric Design, Elsevier, 2020, 79, pp.101838. ⟨10.1016/j.cagd.2020.101838⟩
Computer Aided Geometric Design, 2020, 79, pp.101838. ⟨10.1016/j.cagd.2020.101838⟩
Provided that they are in appropriate configurations (tight data), given planar G 1 Hermite data generate a unique cubic Pythagorean hodograph (PH) spline curve interpolant. On a given associated knot-vector, the corresponding spline function cannot
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f797cd59b201771ca72303f163b15aa5
https://hal.archives-ouvertes.fr/hal-02358014
https://hal.archives-ouvertes.fr/hal-02358014
Autor:
Marie-Laurence Mazure
Publikováno v:
Journal of Computational and Applied Mathematics
Journal of Computational and Applied Mathematics, Elsevier, 2018, 342, pp.550-586. ⟨10.1016/j.cam.2018.03.032⟩
Journal of Computational and Applied Mathematics, 2018, 342, pp.550-586. ⟨10.1016/j.cam.2018.03.032⟩
Journal of Computational and Applied Mathematics, Elsevier, 2018, 342, pp.550-586. ⟨10.1016/j.cam.2018.03.032⟩
Journal of Computational and Applied Mathematics, 2018, 342, pp.550-586. ⟨10.1016/j.cam.2018.03.032⟩
We consider piecewise Chebyshevian splines, in the sense of splines with pieces taken from any different five-dimensional Extended Chebyshev spaces, and with connection matrices at the knots. In this large context we establish necessary and sufficien
Publikováno v:
Journal of Approximation Theory
Journal of Approximation Theory, 2018, 234, pp.20-50. ⟨10.1016/j.jat.2018.04.010⟩
Journal of Approximation Theory, Elsevier, 2018, 234, pp.20-50. ⟨10.1016/j.jat.2018.04.010⟩
Journal of Approximation Theory, 2018, 234, pp.20-50. ⟨10.1016/j.jat.2018.04.010⟩
Journal of Approximation Theory, Elsevier, 2018, 234, pp.20-50. ⟨10.1016/j.jat.2018.04.010⟩
à paraître; International audience; On a given closed bounded interval, an infinite nested sequence of Extended Chebyshev spaces containing the constants automatically generates an infinite sequence of positive linear operators of Bernstein-type. U
Autor:
Marie-Laurence Mazure
Publikováno v:
Numerical Algorithms
Numerical Algorithms, Springer Verlag, 2018, 77 (4), pp.1213-1247. ⟨10.1007/s11075-017-0360-7⟩
Numerical Algorithms, 2018, 77 (4), pp.1213-1247. ⟨10.1007/s11075-017-0360-7⟩
Numerical Algorithms, Springer Verlag, 2018, 77 (4), pp.1213-1247. ⟨10.1007/s11075-017-0360-7⟩
Numerical Algorithms, 2018, 77 (4), pp.1213-1247. ⟨10.1007/s11075-017-0360-7⟩
International audience; We consider the wide class of all piecewise Chebyshevian splines with connection matricesat the knots. We prove that a spline space of this class is “good for interpolation” if and only ifthe spline space obtained by integ
Publikováno v:
Calcolo
Calcolo, Springer Verlag, 2019, 56 (4), ⟨10.1007/s10092-019-0343-2⟩
Calcolo, 2019, 56 (4), ⟨10.1007/s10092-019-0343-2⟩
Calcolo, Springer Verlag, 2019, 56 (4), ⟨10.1007/s10092-019-0343-2⟩
Calcolo, 2019, 56 (4), ⟨10.1007/s10092-019-0343-2⟩
International audience; Recently, Carnicer et al. (Calcolo 54(4):1521–1531, 2017) proved the very elegant and surprising fact that half of the critical length of a cycloidal space coincides with the first positive zero of a spherical Bessel functio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e8936bd25566ad1a7499d526e83b33b0
https://hal.archives-ouvertes.fr/hal-02305316
https://hal.archives-ouvertes.fr/hal-02305316
Publikováno v:
Curves and Surfaces
Curves and Surfaces, Jun 2018, Arcachon, France
Journal of Computational and Applied Mathematics
Journal of Computational and Applied Mathematics, Elsevier, 2020, 370, pp.112603. ⟨10.1016/j.cam.2019.112603⟩
Journal of Computational and Applied Mathematics, 2020, 370, pp.112603. ⟨10.1016/j.cam.2019.112603⟩
Curves and Surfaces, Jun 2018, Arcachon, France
Journal of Computational and Applied Mathematics
Journal of Computational and Applied Mathematics, Elsevier, 2020, 370, pp.112603. ⟨10.1016/j.cam.2019.112603⟩
Journal of Computational and Applied Mathematics, 2020, 370, pp.112603. ⟨10.1016/j.cam.2019.112603⟩
International audience; We provide a numerical method to determine the critical lengths of linear differential operators with constant real coefficients. The need for such a procedure arises when the orders increase. The interest of this article is c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8bd4b8f2e9c68debef914c7fb4333a6d
http://arxiv.org/abs/1904.09253
http://arxiv.org/abs/1904.09253