Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Marie MacCaig"'
Publikováno v:
Linear Algebra and its Applications
Linear Algebra and its Applications, Elsevier, 2020, 595, pp.72-100. ⟨10.1016/j.laa.2020.02.032⟩
Linear Algebra and its Applications, 2020, 595, pp.72-100. ⟨10.1016/j.laa.2020.02.032⟩
Linear Algebra and its Applications, Elsevier, 2020, 595, pp.72-100. ⟨10.1016/j.laa.2020.02.032⟩
Linear Algebra and its Applications, 2020, 595, pp.72-100. ⟨10.1016/j.laa.2020.02.032⟩
In this paper we provide a new graph theoretic proof of the tropical Jacobi identity, recently obtained in [AGN16]. We also develop an application of this theorem to optimal assignments with supervisions. That is, optimally assigning multiple tasks t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8f94a7a59e7eaf6a9f97fd7b7321313f
https://hal.inria.fr/hal-03517930
https://hal.inria.fr/hal-03517930
Autor:
Marie MacCaig
Publikováno v:
Discrete Applied Mathematics
Discrete Applied Mathematics, Elsevier, 2017, 217 (2), pp.261--275. ⟨10.1016/j.dam.2016.09.016⟩
Discrete Applied Mathematics, 2017, 217 (2), pp.261--275. ⟨10.1016/j.dam.2016.09.016⟩
Discrete Applied Mathematics, Elsevier, 2017, 217 (2), pp.261--275. ⟨10.1016/j.dam.2016.09.016⟩
Discrete Applied Mathematics, 2017, 217 (2), pp.261--275. ⟨10.1016/j.dam.2016.09.016⟩
International audience; We investigate the complexity of the problem of finding an integer vector in the max-algebraic column span of a matrix, which we call the integer image problem. We show some cases where we can determine in strongly polynomial
Autor:
Marie Maccaig, Stéphane Gaubert
Publikováno v:
International Journal of Algebra and Computation
International Journal of Algebra and Computation, World Scientific Publishing, 2019, 29 (02), pp.357--389. ⟨10.1142/S0218196718500686⟩
International Journal of Algebra and Computation, 2019, 29 (02), pp.357--389. ⟨10.1142/S0218196718500686⟩
International Journal of Algebra and Computation, World Scientific Publishing, 2019, 29 (02), pp.357--389. ⟨10.1142/S0218196718500686⟩
International Journal of Algebra and Computation, 2019, 29 (02), pp.357--389. ⟨10.1142/S0218196718500686⟩
International audience; We investigate the complexity of counting the number of integer points in tropical polytopes, and the complexity of calculating their volume. We study the tropical analogue of the outer parallel body and establish bounds for i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0fc50723c699b755e74e5224ba4ee96b
https://hal.inria.fr/hal-01675715
https://hal.inria.fr/hal-01675715
Autor:
Peter Butkovič, Marie MacCaig
Publikováno v:
Discrete Applied Mathematics. 162:128-141
Max-linear programs have been used to describe optimisation problems for multiprocessor interactive systems. In some instances the variables used in this model are required to be integer; however, no method seems to exist for finding integer solution
Autor:
Marie MacCaig, Peter Butkovič
Publikováno v:
Linear Algebra and its Applications. 438:3408-3424
Let a ⊕ b = max ( a , b ) and a ⊗ b = a + b for a , b ∈ R ¯ = R ∪ { - ∞ } and extend these operations to matrices and vectors as in conventional algebra. We study the problems of existence and description of integer subeigenvectors (P1) an
Autor:
Marie MacCaig
Publikováno v:
Linear Algebra and its Applications
Linear Algebra and its Applications, Elsevier, 2016, 498, pp.490--520. ⟨10.1016/j.laa.2016.01.018⟩
Linear Algebra and its Applications, 2016, 498, pp.490--520. ⟨10.1016/j.laa.2016.01.018⟩
Linear Algebra and its Applications, Elsevier, 2016, 498, pp.490--520. ⟨10.1016/j.laa.2016.01.018⟩
Linear Algebra and its Applications, 2016, 498, pp.490--520. ⟨10.1016/j.laa.2016.01.018⟩
Between 1970 and 1982 Hans Schneider and co-authors produced a number of results regarding matrix scalings. They demonstrated that a matrix has a diagonal similarity scaling to any matrix with entries in the subgroup generated by the cycle weights of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ab2b2e9e7f645d1d8bf8b8febf1fdd17
https://hal.inria.fr/hal-01423517
https://hal.inria.fr/hal-01423517