Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Mariaule, Nathanaël"'
Autor:
Mariaule, Nathanaël
Let $\widetilde{\mathbb{Q}_p}$ be the field of $p$-adic numbers in the language of rings. In this paper we consider the theory of $\widetilde{\mathbb{Q}_p}$ expanded by two predicates interpreted by multiplicative subgroups $\alpha^\mathbb{Z}$ and $\
Externí odkaz:
http://arxiv.org/abs/1905.11146
Autor:
Mariaule, Nathanaël
Let $G$ be a model of Presburger arithmetic. Let $\mathcal{L}$ be an expansion of the language of Presburger $\mathcal{L}_{Pres}$. In this paper we prove that the $\mathcal{L}$-theory of $G$ is $\mathcal{L}_{Pres}$-minimal iff it has the exchange pro
Externí odkaz:
http://arxiv.org/abs/1806.00315
Autor:
Mariaule, Nathanaël
Let $G$ be a multiplicative subgroup of $\mathbb{Q}_p$. In this paper, we describe the theory of the pair $(\mathbb{Q}_p, G)$ under the condition that $G$ satisfies Mann property and is small as subset of a first-order structure. First, we give an ax
Externí odkaz:
http://arxiv.org/abs/1803.10564
Autor:
Mariaule, Nathanaël
Let Zp be the ring of p-adic integers and Ep be the map x-->exp(px) where exp denotes the exponential map determined by the usual power series. It defines an exponential ring (Zp, +, ., 0, 1, Ep). The goal of the thesis is to study the model theory
Externí odkaz:
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.606986
Autor:
Mariaule, Nathanaël
Let exp(x) be the function determined by the classical power series of the exponentiation. Then E_p(x):=exp(px) is well-defined on Zp, the ring of p-adic integer (for p not equal to 2, we set E_2(x)=exp(4x)). Furthermore, E_p determines a structure o
Externí odkaz:
http://arxiv.org/abs/1408.0900
Autor:
Mariaule, Nathanaël
In their paper 'p-adic and real subanalytic sets, J. Denef and L. van den Dries prove that the theory of the ring of p-adic integers admits the elimination of quantifiers in the language of p-adic restricted analytic functions expanded by a division
Externí odkaz:
http://arxiv.org/abs/1408.0610
Autor:
MARIAULE, NATHANAËL
Publikováno v:
The Journal of Symbolic Logic, 2017 Mar 01. 82(1), 166-182.
Externí odkaz:
https://www.jstor.org/stable/26358442
Autor:
Mariaule, Nathanaël1 (AUTHOR) Nathanael.Mariaule@umons.ac.be
Publikováno v:
Mathematical Logic Quarterly. Mar2020, Vol. 66 Issue 1, p82-90. 9p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.