Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Marian P. Roque"'
Autor:
Editha C. Jose, Marian P. Roque
Publikováno v:
Science Diliman, Vol 28, Iss 2, Pp 65-82 (2016)
This paper establishes the existence and uniquenesss of a weak solution of a quasilinear parabolic problem in an open set whose boundary is the union of two disjoint closed surfaces. A Dirichlet condition is prescribed on the exterior boundary and a
Externí odkaz:
https://doaj.org/article/4df72a51abd64da5b6c3494e6bd54b1b
Autor:
Ikha Magdalena, Muh Fadhel Atras, Leo Sembiring, M. A. Nugroho, Roi Solomon B. Labay, Marian P. Roque
Publikováno v:
Computation, Vol 8, Iss 2, p 56 (2020)
In this paper, we investigate the wave damping mechanism caused by the presence of submerged bars using the Shallow Water Equations (SWEs). We first solve these equations for the single bar case using separation of variables to obtain the analytical
Externí odkaz:
https://doaj.org/article/ea98fdd9fb394362b49b74f5365d2f72
Autor:
M. A. Nugroho, Ikha Magdalena, Roi Solomon B. Labay, Muh. Fadhel Atras, Leo Sembiring, Marian P. Roque
Publikováno v:
Computation, Vol 8, Iss 56, p 56 (2020)
Computation
Volume 8
Issue 2
Computation
Volume 8
Issue 2
In this paper, we investigate the wave damping mechanism caused by the presence of submerged bars using the Shallow Water Equations (SWEs). We first solve these equations for the single bar case using separation of variables to obtain the analytical
Publikováno v:
An Introduction to Second Order Partial Differential Equations ISBN: 9789813229174
An Introduction to Second Order Partial Differential Equations: Classical and Variational Solutions
An Introduction to Second Order Partial Differential Equations: Classical and Variational Solutions
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fd35745d86f2bfc178c06a907af485ec
https://doi.org/10.1142/9789813229181_0008
https://doi.org/10.1142/9789813229181_0008
Publikováno v:
An Introduction to Second Order Partial Differential Equations ISBN: 9789813229174
An Introduction to Second Order Partial Differential Equations: Classical and Variational Solutions
An Introduction to Second Order Partial Differential Equations: Classical and Variational Solutions
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0020d9cf22b9aeb85b672ab3e9b09265
https://doi.org/10.1142/9789813229181_0009
https://doi.org/10.1142/9789813229181_0009
Publikováno v:
An Introduction to Second Order Partial Differential Equations ISBN: 9789813229174
An Introduction to Second Order Partial Differential Equations: Classical and Variational Solutions
An Introduction to Second Order Partial Differential Equations: Classical and Variational Solutions
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::860eafc4d575cb97fee275a1d3113a2a
https://doi.org/10.1142/9789813229181_0002
https://doi.org/10.1142/9789813229181_0002
Publikováno v:
An Introduction to Second Order Partial Differential Equations ISBN: 9789813229174
An Introduction to Second Order Partial Differential Equations: Classical and Variational Solutions
An Introduction to Second Order Partial Differential Equations: Classical and Variational Solutions
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::de360bbbff58a1c6e8e4040b8fe99069
https://doi.org/10.1142/9789813229181_0007
https://doi.org/10.1142/9789813229181_0007
Publikováno v:
An Introduction to Second Order Partial Differential Equations ISBN: 9789813229174
An Introduction to Second Order Partial Differential Equations: Classical and Variational Solutions
An Introduction to Second Order Partial Differential Equations: Classical and Variational Solutions
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::101a57fc2b768b9c8b618171aed5a234
https://doi.org/10.1142/9789813229181_0001
https://doi.org/10.1142/9789813229181_0001
Publikováno v:
International Journal of Mathematical Analysis. 7:2833-2844
In this paper, we present the sectional curvature of nearly quasiEinstein manifolds whose associated tensor E of type (0, 2) is given by E(X,Y ) = A(X)B(Y ) + A(Y )B(X). Mathematics Subject Classification: 53B30, 53C15 2834 Shyamal Kumar Hui, Richard
Autor:
Juancho A. Collera, Marian P. Roque
Publikováno v:
International Journal of Mathematical Analysis. 7:2803-2810