Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Maria Yakerson"'
Publikováno v:
Épijournal de Géométrie Algébrique, Vol Volume 5 (2021)
We obtain geometric models for the infinite loop spaces of the motivic spectra $\mathrm{MGL}$, $\mathrm{MSL}$, and $\mathbf{1}$ over a field. They are motivically equivalent to $\mathbb{Z}\times \mathrm{Hilb}_\infty^\mathrm{lci}(\mathbb{A}^\infty)^+$
Externí odkaz:
https://doaj.org/article/c33b7305e536426480166b1e6e37b025
Publikováno v:
Forum of Mathematics, Pi, Vol 8 (2020)
We prove that the $\infty $-category of $\mathrm{MGL} $-modules over any scheme is equivalent to the $\infty $-category of motivic spectra with finite syntomic transfers. Using the recognition principle for infinite $\mathbf{P} ^1$-loop spaces, we de
Externí odkaz:
https://doaj.org/article/ec3170461b7743b495d0448daf558807
Publikováno v:
Cambridge Journal of Mathematics. 9:431-549
We prove a recognition principle for motivic infinite P1-loop spaces over a perfect field. This is achieved by developing a theory of framed motivic spaces, which is a motivic analogue of the theory of E-infinity-spaces. A framed motivic space is a m
Autor:
Maria Yakerson, Tom Bachmann
Publikováno v:
Geometry & Topology. 24:1969-2034
We study the interplay of the homotopy coniveau tower, the Rost–Schmid complex of a strictly homotopy invariant sheaf, and homotopy modules. For a strictly homotopy invariant sheaf M, smooth k–scheme X and q≥0, we construct a new cycle complex
Publikováno v:
Journal of Topology. 13:460-500
We relate the recognition principle for infinite $\mathbf P^1$-loop spaces to the theory of motivic fundamental classes of D\'eglise, Jin, and Khan. We first compare two kinds of transfers that are naturally defined on cohomology theories represented