Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Maria Pia GUALDANI"'
Publikováno v:
Communications in Mathematical Sciences. 20:2315-2365
Publikováno v:
Annales scientifiques de l'École Normale Supérieure. 55:1575-1611
Publikováno v:
Recercat. Dipósit de la Recerca de Catalunya
instname
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
instname
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
A nonlinear degenerate Fokker-Planck equation in the whole space is analyzed. The existence of solutions to the corresponding implicit Euler scheme is proved, and it is shown that the semi-discrete solution converges to a solution of the continuous p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2d086c2ccd2d99f44723d1057504d613
http://hdl.handle.net/2072/384395
http://hdl.handle.net/2072/384395
In this paper we investigate existence of solutions for the system: D t α u = div ( u ∇ p ) , D t α p = − ( − Δ ) s p + u 2 , in T 3 for 0 s ≤ 1 , and 0 α ≤ 1 . The term D t α u denotes the Caputo derivative, which models memory effect
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f40b014c256e39b6234861443c0c3e52
Autor:
Maria Pia Gualdani, Nicola Zamponi
Publikováno v:
SIAM Journal on Mathematical Analysis. 50:3676-3714
In this manuscript we consider an isotropic modification for the Landau equation with Coulomb potential in three space dimensions. Global in time existence of weak solutions for even initial data is shown by employing a time semi-discretization of th
Publikováno v:
Mémoires de la Société mathématique de France. 153:1-137
Autor:
Maria Pia Gualdani, Nestor Guillen
Publikováno v:
Calculus of Variations and Partial Differential Equations. 58
In this manuscript we investigate the regularization of solutions for the spatially homogeneous Landau equation. For moderately soft potentials, it is shown that weak solutions become smooth instantaneously and stay so over all times, and the estimat
In this manuscript we consider a porous medium equation with non-local diffusion effects given by a fractional heat operator $\partial_t + (-\Delta)^s$ in two space dimensions. Global in time existence of weak solutions is shown by employing a time s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9b83d2fb39253e311a49e9dba29c990b
In this manuscript we consider a non-local porous medium equation with non-local diffusion effects given by a fractional heat operator { ∂ t u = div ( u ∇ p ) , ∂ t p = − ( − Δ ) s p + u 2 , in three space dimensions for 3 / 4 ≤ s 1 and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8d9b07d28414e5dfccfcceddc4709805
Autor:
Maria Pia Gualdani, Nicola Zamponi
Publikováno v:
Springer INdAM Series ISBN: 9783030019464
We consider the equation $$\displaystyle u_t = \mathrm{div}\,(a[u]\nabla u - u\nabla a[u]),\qquad -\Delta a = u. $$ This model has attracted some attention in the recent years and several results are available in the literature. We review recent resu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9c8db1c0b48abf6809dbcd1aa6c29adc
https://doi.org/10.1007/978-3-030-01947-1_6
https://doi.org/10.1007/978-3-030-01947-1_6