Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Maria Fernanda, Elbert"'
Publikováno v:
Communications in Analysis and Geometry. 27:1251-1279
Autor:
Barbara Nelli, Maria Fernanda Elbert
Publikováno v:
Bulletin of the London Mathematical Society. 51:89-106
Publikováno v:
Manuscripta Mathematica. 149:507-521
We prove the existence of rotational hypersurfaces in $${\mathbb{H}^n \times \mathbb{R}}$$ with $${H_{r+1} = 0}$$ (r-minimal hupersurfaces) and we classify them. Then we prove some uniqueness theorems for r-minimal hypersurfaces with a given (finite
Autor:
Maria Fernanda Elbert, Ricardo Sa Earp
Publikováno v:
Annali di Matematica Pura ed Applicata (1923 -). 194:1809-1834
In this paper, we are concerned with hypersurfaces in \(\mathrm{I\!H}\times \mathrm{I\!R}\) with constant \(r\)-mean curvature, to be called \(H_r\)-hypersurfaces. We construct examples of complete \(H_r\)-hypersurfaces, which are invariant by parabo
Autor:
Maria Fernanda Elbert, Ricardo Sa Earp
Publikováno v:
Annali di Matematica Pura ed Applicata. 193:103-114
In this paper, we give all solutions of the constant mean curvature equation in \({\mathbb{H}^n\times\mathbb{R}}\) that are invariant by parabolic screw motion and we give the full description of their geometric behaviors. Some of these solutions giv
Publikováno v:
Transactions of the American Mathematical Society. 364:1179-1191
We prove existence of graphs over exterior domains of H2 × {0}, of constant mean curvature H = 1 2 in H2 × R and weak growth equal to the embedded rotational examples.
Publikováno v:
Annals of Global Analysis and Geometry. 34:39-53
We study minimal graphs in \({M \times \mathbb{R}}\) . First, we establish some relations between the geometry of the domain and the existence of certain minimal graphs. We then discuss the problem of finding the maximal number of disjoint domains Ω
Publikováno v:
東北數學雜誌. Second series = Tohoku mathematical journal. Second series. 56(2):155-162
A form of Bernstein theorem states that a complete stable minimal surface in euclidean space is a plane. A generalization of this statement is that there exists no complete stable hypersurface of an $n$-euclidean space with vanishing $(n-1)$-mean cur
Autor:
Maria Fernanda Elbert
Publikováno v:
Proceedings of the American Mathematical Society. 128:1443-1450
We generalize Efimov’s Theorem for graphs in Euclidean space using the scalar curvature, with an additional hypothesis on the second fundamental form.
Publikováno v:
Manfredo P. do Carmo – Selected Papers ISBN: 9783642255878
Hypersurfaces of euclidean spaces with vanishing r-mean curvature generalize minimal hypersurfaces (case r = I) and include the important case of scalar curvature (r = 2). They are critical points of variational problems and a notion of stability can
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::86d16b48593b448eb8f9d4353dae362a
https://doi.org/10.1007/978-3-642-25588-5_31
https://doi.org/10.1007/978-3-642-25588-5_31