Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Maria Donten-Bury"'
Publikováno v:
Le Matematiche, Vol 66, Iss 2, Pp 153-187 (2011)
We investigate Mori dream spaces obtained by blowing-up the n-dimensional complex projective space at n + 1, n + 2 or n + 3 points in very general position. Using toric techniques we study the movable cone of the blow-up of Pn at n + 1 points, its de
Externí odkaz:
https://doaj.org/article/829594555d4c42edb35d8d3dc19346b5
Autor:
Andrzej Weber, Maria Donten-Bury
Publikováno v:
Transformation Groups. 23:671-705
We study properties of the Hirzebruch class of quotient singularities $\mathbb{C}^n/G$, where $G$ is a finite matrix group. The main result states that the Hirzebruch class coincides with the Molien series of $G$ under suitable substitution of variab
Autor:
Michal Kapustka, Grzegorz Kapustka, Bert van Geemen, Maria Donten-Bury, Jarosław A. Wiśniewski
Publikováno v:
Geom. Topol. 21, no. 2 (2017), 1179-1230
We show that the Hilbert scheme of two points on the Vinberg $K3$ surface has a 2:1 map onto a very symmetric EPW sextic $Y$ in $\mathbb{P}^5$. The fourfold $Y$ is singular along $60$ planes, $20$ of which form a complete family of incident planes. T
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9e0f50d1927e2213a2b609dd58aab136
http://ruj.uj.edu.pl/xmlui/handle/item/39717
http://ruj.uj.edu.pl/xmlui/handle/item/39717
Publikováno v:
Fields Institute Communications ISBN: 9781493974856
The Cox ring of a del Pezzo surface of degree 3 has a distinguished set of 27 minimal generators. We investigate conditions under which the initial forms of these generators generate the initial algebra of this Cox ring. Sturmfels and Xu provide a cl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1ec9c17ea007ac6bc6f16c1390f71b55
https://doi.org/10.1007/978-1-4939-7486-3_8
https://doi.org/10.1007/978-1-4939-7486-3_8
Autor:
Maksymilian Grab, Maria Donten-Bury
We study Cox rings of crepant resolutions of quotient singularities $\mathbb{C}^3/G$ where $G$ is a finite subgroup of $SL(3,\mathbb{C})$. We use them to obtain information on the geometric structure of these resolutions, number of different resoluti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6414a7e1721ddcd55b769672d96b53f8
Autor:
Maria Donten-Bury
We investigate Cox rings of minimal resolutions of surface quotient singularities and provide two descriptions of these rings. The first one is the equation for the spectrum of a Cox ring, which is a hypersurface in an affine space. The second is the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::26752a356280916336db64b0fb30ced1
http://arxiv.org/abs/1301.2633
http://arxiv.org/abs/1301.2633
Autor:
Mateusz Michałek, Maria Donten-Bury
In this paper we investigate properties of algebraic varieties representing group-based phylogenetic models. We propose a method of generating many phylogenetic invariants. We prove that we obtain all invariants for any tree for the binary Jukes-Cant
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7c1e4abd4eeda9cf1e68fde987a94dbf
http://arxiv.org/abs/1011.3236
http://arxiv.org/abs/1011.3236
Autor:
Maria Donten-Bury
Publikováno v:
Annals of Combinatorics. 20(3):549-568
We study phylogenetic invariants of general group-based models of evolution with group of symmetries \({\mathbb{Z}_3}\). We prove that complex projective schemes corresponding to the ideal I of phylogenetic invariants of such a model and to its subid