Zobrazeno 1 - 10
of 47
pro vyhledávání: '"Maria, Sandsten"'
Publikováno v:
Frontiers in Neuroscience, Vol 18 (2024)
In the literature, auditory attention is explored through neural speech tracking, primarily entailing modeling and analyzing electroencephalography (EEG) responses to natural speech via linear filtering. Our study takes a novel approach, introducing
Externí odkaz:
https://doaj.org/article/9e30c4a6533b466d87200bb3397e4577
Autor:
Rachele Anderson, Maria Sandsten
Publikováno v:
EURASIP Journal on Advances in Signal Processing, Vol 2020, Iss 1, Pp 1-18 (2020)
Abstract This paper investigates the extraction of time-frequency (TF) features for classification of electroencephalography (EEG) signals and episodic memory. We propose a model based on the definition of locally stationary processes (LSPs), estimat
Externí odkaz:
https://doaj.org/article/f26bdb30817c45a1a6210e32745ce54e
Publikováno v:
JASA express letters. 1(5)
This study evaluates the applicability of scaled reassigned spectrograms (ReSTS) on ultrasound radio frequency data obtained with a clinical linear array ultrasound transducer. The ReSTS's ability to resolve axially closely spaced objects in a phanto
Autor:
Maria Akesson, Maria Sandsten
Publikováno v:
2022 30th European Signal Processing Conference (EUSIPCO).
Autor:
Oskar Keding, Maria Sandsten
Publikováno v:
2022 30th European Signal Processing Conference (EUSIPCO).
Autor:
Isabella Reinhold, Maria Sandsten
Publikováno v:
Signal Processing. 198:108570
Autor:
Maria Sandsten, Rachele Anderson, Isabella Reinhold, Bo Bernhardsson, Carolina Bergeling, Mikael Johansson
Publikováno v:
2021 29th European Signal Processing Conference (EUSIPCO).
Publikováno v:
2021 29th European Signal Processing Conference (EUSIPCO).
Autor:
Isabella Reinhold, Maria Sandsten
Publikováno v:
2021 29th European Signal Processing Conference (EUSIPCO).
Autor:
Rachele Anderson, Maria Sandsten
Publikováno v:
Journal of Computational and Applied Mathematics. 347:24-35
Locally Stationary Processes (LSPs) in Silverman’s sense, defined by the modulation in time of a stationary covariance function, are valuable in stochastic modelling of time-varying signals. However, for practical applications, methods to conduct r