Zobrazeno 1 - 10
of 544
pro vyhledávání: '"Margulies S"'
Autor:
Majumdar, S., McKinley, K.W., Chamberlain, J., Thomas, B., Margulies, S., Nickel, R.S., Darbari, D.S., Campbell, A., Berul, C., Summar, M., Kalsi, G.
Publikováno v:
In Contemporary Clinical Trials Communications April 2023 32
Autor:
Margulies, S., Morton, J.
A Pfaffian circuit is a tensor contraction network where the edges are labeled with changes of bases in such a way that a very specific set of combinatorial properties are satisfied. By modeling the permissible changes of bases as systems of polynomi
Externí odkaz:
http://arxiv.org/abs/1311.4066
This paper studies systems of polynomial equations that provide information about orientability of matroids. First, we study systems of linear equations over GF(2), originally alluded to by Bland and Jensen in their seminal paper on weak orientabilit
Externí odkaz:
http://arxiv.org/abs/1309.7719
Given a graph $G$, a dominating set $D$ is a set of vertices such that any vertex in $G$ has at least one neighbor (or possibly itself) in $D$. A ${k}$-dominating multiset $D_k$ is a multiset of vertices such that any vertex in $G$ has at least $k$ v
Externí odkaz:
http://arxiv.org/abs/1209.1842
A dominating set $D$ for a graph $G$ is a subset of $V(G)$ such that any vertex not in $D$ has at least one neighbor in $D$. The domination number $\gamma(G)$ is the size of a minimum dominating set in $G$. Vizing's conjecture from 1968 states that f
Externí odkaz:
http://arxiv.org/abs/1109.2174
Systems of polynomial equations over an algebraically-closed field K can be used to concisely model many combinatorial problems. In this way, a combinatorial problem is feasible (e.g., a graph is 3-colorable, hamiltonian, etc.) if and only if a relat
Externí odkaz:
http://arxiv.org/abs/0801.3788
Systems of polynomial equations over the complex or real numbers can be used to model combinatorial problems. In this way, a combinatorial problem is feasible (e.g. a graph is 3-colorable, hamiltonian, etc.) if and only if a related system of polynom
Externí odkaz:
http://arxiv.org/abs/0706.0578
Autor:
Margulies, S., Morton, J.
Publikováno v:
In Journal of Symbolic Computation May-June 2016 74:152-180
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In European Journal of Combinatorics November 2015 50:56-71