Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Margit Rösler"'
Autor:
Margit Rösler, Michael Voit
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 4, p 083 (2008)
We prove a limit relation for the Dunkl-Bessel function of type BN with multiplicity parameters k_1 on the roots ±ei and k_2 on ±e_i±e_j where k_1 tends to infinity and the arguments are suitably scaled. It gives a good approximation in terms of t
Externí odkaz:
https://doaj.org/article/4d666c73e50d4ce1844806ee3e99443f
Autor:
Dominik Brennecken, Margit Rösler
Publikováno v:
Transactions of the American Mathematical Society.
We continue a program generalizing classical results from the analysis on symmetric cones to the Dunkl setting for root systems of type A A . In particular, we prove a Dunkl-Laplace transform identity for Heckman-Opdam hypergeometric functions of typ
Autor:
Michael Voit, Margit Rösler
Publikováno v:
Studies in Applied Mathematics. 141:474-500
There exist several multivariate extensions of the classical Sonine integral representation for Bessel functions of some index $\mu+ \nu$ with respect to such functions of lower index $\mu.$ For Bessel functions on matrix cones, Sonine formulas invol
Publikováno v:
Potential Analysis. 48:337-360
We prove the existence and study properties of the Green function of the unit ball for the Dunkl Laplacian $\Delta_k$ in $\mathbb{R}^d$. As applications we derive the Poisson-Jensen formula for $\Delta_k$-subharmonic functions and Hardy-Stein identit
Autor:
Michael Voit, Margit Rösler
Let $V_k$ denote Dunkl's intertwining operator for the root sytem $B_n$ with multiplicity $k=(k_1,k_2)$ with $k_1\geq 0, k_2>0$. It was recently shown that the positivity of the operator $V_{k^\prime\!,k} =V_{k^\prime}\circ V_k^{-1}$ which intertwine
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aaf5d098a97bfe4b5c1ce88a0a1c053a
http://arxiv.org/abs/1912.12711
http://arxiv.org/abs/1912.12711
Autor:
Margit Rösler
We study Riesz distributions in the framework of rational Dunkl theory associated with root systems of type A. As an important tool, we employ a Laplace transform involving the associated Dunkl kernel, which essentially goes back to Macdonald, but wa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d84f4c47163ac06527337b3970c8e660
http://arxiv.org/abs/1905.09493
http://arxiv.org/abs/1905.09493
Autor:
Margit Rösler, Michael Voit
Let $V_k$ denote Dunkl's intertwining operator associated with some root system $R$ and multiplicity function $k$. For two multiplicities $k, k^\prime$ on $R$, we study the operator $V_{k^\prime,k} = V_{k^\prime}\circ V_k^{-1}$, which intertwines the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c083a59aa53c86bbf8248779dfcd6592
http://arxiv.org/abs/1902.02821
http://arxiv.org/abs/1902.02821
Autor:
Heiko Remling, Margit Rösler
Publikováno v:
Journal of Approximation Theory. 197:30-48
We study convolution algebras associated with Heckman-Opdam polynomials. For root systems of type B C we derive three continuous classes of positive convolution algebras (hypergroups) by interpolating the double coset convolution structures of compac
Autor:
Margit Rösler, Michael Voit
Publikováno v:
Transactions of the American Mathematical Society. 368:6005-6032
The Heckman-Opdam hypergeometric functions of type BC extend classical Jacobi functions in one variable and include the spherical functions of non-compact Grassmann manifolds over the real, complex or quaternionic numbers. There are various limit tra
Publikováno v:
Compositio Mathematica, 149(8), 1381-1400. Cambridge University Press
Let ${F}_{BC} (\lambda , k; t)$ be the Heckman–Opdam hypergeometric function of type BC with multiplicities $k= ({k}_{1} , {k}_{2} , {k}_{3} )$ and weighted half-sum $\rho (k)$ of positive roots. We prove that ${F}_{BC} (\lambda + \rho (k), k; t)$