Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Margarita A. Nikishina"'
Autor:
Dmitri V. Alexandrov, Margarita A. Nikishina, Eugenya V. Makoveeva, Irina V. Alexandrova, Liubov V. Toropova
Publikováno v:
Results in Physics, Vol 58, Iss , Pp 107494- (2024)
The evolution of a polydisperse ensemble of prolate and oblate ellipsoidal crystals in a supercooled one-component melt is theoretically studied. The volume growth rates for prolate and oblate ellipsoids are analytically found and compared at the sam
Externí odkaz:
https://doaj.org/article/99beec0e99394ea99bd5c5ff95815213
Autor:
Ekaterina A. Titova, Peter K. Galenko, Margarita A. Nikishina, Liubov V. Toropova, Dmitri V. Alexandrov
Publikováno v:
Axioms, Vol 12, Iss 11, p 1016 (2023)
The boundary integral equation defining the interface function for a curved solid/liquid phase transition boundary is analytically solved in steady-state growth conditions. This solution describes dendrite tips evolving in undercooled melts with a co
Externí odkaz:
https://doaj.org/article/f8bb7ec6dbb544019a5e730dbb7599a0
Autor:
Dmitri V. Alexandrov, Irina V. Alexandrova, Margarita A. Nikishina, Alexey P. Malygin, Liubov V. Toropova
Publikováno v:
Crystals, Vol 13, Iss 9, p 1361 (2023)
We formulate the mathematical model of directional crystallization of a binary melt with a mushy layer (region) between purely solid and liquid phases. This model is complicated by melt convection and pressure-dependent phase transition temperature.
Externí odkaz:
https://doaj.org/article/4e9f89676a1c4829bdad4c7523abaf24
Publikováno v:
Crystals, Vol 12, Iss 10, p 1495 (2022)
The transient behavior of an ensemble of ellipsoidal particles in a supercooled binary melt is considered. The model laws, based on the Fokker-Planck type kinetic equation for the particle-volume distribution function, the thermal and mass integral b
Externí odkaz:
https://doaj.org/article/618f3fcb4af14d55ba4372b8ecef6809
Publikováno v:
The European Physical Journal Special Topics.
Publikováno v:
The European Physical Journal Special Topics. 231:1107-1113
Autor:
Irina V. Alexandrova, Alexander A. Ivanov, Alexey P. Malygin, Dmitri V. Alexandrov, Margarita A. Nikishina
Publikováno v:
The European Physical Journal Special Topics. 231:1089-1100
Publikováno v:
The European Physical Journal Special Topics. 229:2937-2949
This paper is concerned with the evolution of a particulate assemblage of ellipsoidal particles in a metastable liquid with allowance for arbitrary nucleation kinetics. First, the growth of a single ellipsoidal particle is considered and its growth r
Publikováno v:
Mathematical Methods in the Applied Sciences
In this paper, a complete analytical solution to the integro-differential model describing the nucleation and growth of ellipsoidal crystals in a supersaturated solution is obtained. The asymptotic solution of the model equations is constructed using
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e418bf46d62b1c3df02d0d848c8fadd9
https://hdl.handle.net/10995/118327
https://hdl.handle.net/10995/118327
Autor:
Dmitri V. Alexandrov, Eugenya V. Makoveeva, Margarita A. Nikishina, Irina V. Alexandrova, Alexander A. Ivanov
Publikováno v:
EIGHTH INTERNATIONAL CONFERENCE NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES2021).