Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Margarida Camarinha"'
Autor:
Margarida Camarinha
Publikováno v:
Electronic Research Archive, Vol 32, Iss 5, Pp 3396-3412 (2024)
We propose a fourth-order extension of the geodesic problem arising in the continuity of the study of Riemannian cubics. We consider the variational problem in a Riemannian manifold and derive the Euler-Lagrange equation. For the special situation of
Externí odkaz:
https://doaj.org/article/60b3d5240209423e99bf09883d1043eb
Autor:
Lígia Abrunheiro, Margarida Camarinha
Publikováno v:
Mathematics, Vol 11, Iss 17, p 3628 (2023)
The notion of k-harmonic curves is associated with the kth-order variational problem defined by the k-energy functional. The present paper gives a geometric formulation of this higher-order variational problem on a Riemannian manifold M and describes
Externí odkaz:
https://doaj.org/article/6954fe6dd70149c5b5ad98bb336ce630
Publikováno v:
Lecture Notes in Electrical Engineering ISBN: 9783030586522
We study local existence and uniqueness for Riemannian cubics satisfying boundary conditions. We define the biexponential map and use it to relate initial and boundary data. We also describe biconjugate points along cubics by means of the biexponenti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::98c5930b98579374fafb79a7e3be1953
https://doi.org/10.1007/978-3-030-58653-9_31
https://doi.org/10.1007/978-3-030-58653-9_31
Autor:
Margarida Camarinha, Matteo Raffaelli
We study semi-Riemannian submanifolds of arbitrary codimension in a Lie group $G$ equipped with a bi-invariant metric. In particular, we show that, if the normal bundle of $M \subset G$ is closed under the Lie bracket, then any normal Jacobi operator
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::81e57edc05f08afa426b9e48222a8294
http://arxiv.org/abs/2003.12295
http://arxiv.org/abs/2003.12295
In this paper, we study variational point-obstacle avoidance problems on complete Riemannian manifolds. The problem consists of minimizing an energy functional depending on the velocity, covariant acceleration and a repulsive potential function used
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::34d6a062287f2850ff8e2b036da33293
Publikováno v:
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Repositorio Abierto de la UdL
Universitad de Lleida
Recercat. Dipósit de la Recerca de Catalunya
instname
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Repositorio Abierto de la UdL
Universitad de Lleida
Recercat. Dipósit de la Recerca de Catalunya
instname
Quantum splines are curves in a Hilbert space or, equivalently, in the corresponding Hilbert projective space, which generalize the notion of Riemannian cubic splines to the quantum domain. In this paper, we present a generalization of this concept t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::78d49734d4062a5489e532037766a50b
http://arxiv.org/abs/1811.08141
http://arxiv.org/abs/1811.08141
This work is devoted to studying dynamic interpolation for obstacle avoidance. This is a problem that consists of minimizing a suitable energy functional among a set of admissible curves subject to some interpolation conditions. The given energy func
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a87691a4254e5e196a6097f047f230e0
http://arxiv.org/abs/1809.03168
http://arxiv.org/abs/1809.03168
Publikováno v:
CDC
In this article we introduce a variational approach to collision avoidance of multiple agents evolving on a Riemannian manifold and derive necessary conditions for extremals. The problem consists of finding non-intersecting trajectories of a given nu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::53861aaf1f7e4442117690b95d72e618
http://arxiv.org/abs/1804.00122
http://arxiv.org/abs/1804.00122
Publikováno v:
CDC
We introduce variational obstacle avoidance problems on Riemannian manifolds and derive necessary conditions for the existence of their normal extremals. The problem consists of minimizing an energy functional depending on the velocity and covariant
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Submitted by Lígia Raquel Lopes Dos Santos Abrunheiro (abrunheiroligia@ua.pt) on 2016-05-20T23:48:01Z No. of bitstreams: 1 243621.pdf: 2063022 bytes, checksum: 947705dd48a4cc2849fc7bb0ccfd3957 (MD5) Approved for entry into archive by Rita Goncalves(