Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Margaret Zeile"'
Autor:
Mansoor Ani Najeeb Nellikkal, Rodolfo Keesey, Margaret Zeile, Venkateswaran Shekar, Zhi Li, Nicholas Leiby, Matthias Zeller, Emory M. Chan, Joshua Schrier, Alexander J. Norquist
Publikováno v:
Chemistry of Materials. 34:5386-5396
Autor:
Rodolfo Keesey, Armi Tiihonen, Alexander E. Siemenn, Thomas W. Colburn, Shijing Sun, Noor Titan Putri Hartono, James Serdy, Margaret Zeile, Keqing He, Cole A. Gurtner, Austin C. Flick, Clio Batali, Alex Encinas, Richa R. Naik, Zhe Liu, Felipe Oviedo, I. Marius Peters, Janak Thapa, Siyu Isaac Parker Tian, Reinhold H. Dauskardt, Alexander J. Norquist, Tonio Buonassisi
This study is motivated by the desire to disseminate a low-cost, high-precision, high-throughput environmental chamber to test materials and devices under elevated humidity, temperature, and light. This paper documents the creation of an open-source
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3ff8efb4880a3c06c374706e9a2af112
https://doi.org/10.26434/chemrxiv-2022-wp18w-v2
https://doi.org/10.26434/chemrxiv-2022-wp18w-v2
Autor:
Venkateswaran Shekar, Vincent Yu, Benjamin J. Garcia, David Benjamin Gordon, Gemma E. Moran, David M. Blei, Loïc M. Roch, Alberto García-Durán, Mansoor Ani Najeeb, Margaret Zeile, Philip W. Nega, Zhi Li, Mina A. Kim, Emory M. Chan, Alexander J. Norquist, Sorelle Friedler, Joshua Schrier
Machine learning is a useful tool for accelerating materials discovery, however it is a challenge to develop accurate methods that successfully transfer between domains while also broadening the scope of reaction conditions considered. In this paper,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f9b7d8eb73803574e204f28241acb281
https://doi.org/10.26434/chemrxiv-2022-l1wpf-v2
https://doi.org/10.26434/chemrxiv-2022-l1wpf-v2
Autor:
Mansoor Ani Najeeb, Sorelle A. Friedler, Vincent Yu, Emory M. Chan, Zhi Li, Alexander J. Norquist, Dylan Slack, Venkateswaran Shekar, Joshua Schrier, Philip Nega, Gareth Nicholas, Xiaorong Wang, Margaret Zeile
Autonomous experimentation systems use algorithms and data from prior experiments to select and perform new experiments in order to meet a specified objective. In most experimental chemistry situations, there is a limited set of prior historical data
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0bb496e9061d2b4c98e8d3ea86eda1d1
https://doi.org/10.26434/chemrxiv-2021-tfdmc
https://doi.org/10.26434/chemrxiv-2021-tfdmc