Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Marcos J. González"'
Publikováno v:
Qualitative Theory of Dynamical Systems. 20
In the present article we study the periodic structure of a class of maps on the n-dimensional torus such that the eigenvalues of the induced map on the first homology are dilations of roots of unity. This family of maps shares some properties with t
Publikováno v:
Topology and its Applications. 235:428-444
We provide a general formula and give an explicit expression of the Lefschetz zeta function for any quasi-unipotent map on the space X = S l × ⋯ × ︸ n − times S l , with l > 1 . Among the quasi-unipotent maps are Morse–Smale diffeomorphisms
Publikováno v:
Topology and its Applications. 210:246-262
We provide a general formula and give an explicit expression of the Lefschetz zeta function for any quasi-unipotent map on the n -dimensional torus. The Lefschetz zeta function is used to characterize the minimal set of Lefschetz periods for Morse–
Autor:
Marcos J. González
Publikováno v:
Archiv der Mathematik. 105:425-433
We prove the following Cantor–Bernstein type theorem, which applies well to the class of symmetric sequence spaces studied earlier by Altshuler, Casazza, and Lin: Let X and Y be Banach spaces having symmetric bases (xn) and (yn), respectively. If e
Autor:
Marcos J. González, Carlos Finol
Publikováno v:
Journal of Mathematical Analysis and Applications. 426:380-391
We prove the following general result: Let ( x n ) be a boundedly complete symmetric basis for a Banach space X. Then, for every symmetric basic sequence in X, we have the following alternatives: (a) it is equivalent to a basic sequence generated by
Publikováno v:
Banach Center Publications. 102:71-88
For two Banach spaces X and Y , we write dim'(X) = dim'(Y ) if X embeds into Y and vice versa; then we say that X and Y have the same linear dimension. In this paper, we consider classes of Banach spaces with symmetric bases. We say that such a class
Autor:
Marek Wójtowicz, Marcos J. González
Publikováno v:
Funct. Approx. Comment. Math. 50, no. 2 (2014), 283-296
Let $X_a$ denote the order continuous part of a Banach lattice $X$, and let $\Gamma$ be an uncountable set. We extend Drewnowski's theorem on the comparison of linear dimensions between Banach spaces having uncountable symmetric bases to a~class of d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::256dc6faec212058e490b5847dee82d6
http://projecteuclid.org/euclid.facm/1403811845
http://projecteuclid.org/euclid.facm/1403811845
Autor:
Marcos J. González, Marek Wójtowicz
Publikováno v:
Banach Spaces and their Applications in Analysis: In Honor of Nigel Kalton's 60th Birthday
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5c60bc14e327c8a307ebced3d4e5d4c5
https://doi.org/10.1515/9783110918298.339
https://doi.org/10.1515/9783110918298.339
Autor:
Alain Togbé, Florian Luca, Kevin A. Broughan, V. Janitzio Mejía Huguet, Marcos J. González, Ryan H. Lewis
Publikováno v:
Integers. 11
We show that no Fibonacci number (larger than 1) divides the sum of its divisors.
Autor:
Florian Luca, Marcos J. González, Pedro Berrizbeitia, V. Janitzio Mejía Huguet, J.G. Fernandes
Publikováno v:
Journal of Number Theory. (12):2836-2841
We describe an algorithm to determine whether or not a given system of congruences is satisfied by Cullen numbers. We use this algorithm to prove that there are infinitely many Cullen numbers which are both Riesel and Sierpinski. (Such numbers should