Zobrazeno 1 - 10
of 55
pro vyhledávání: '"Marcos J. González"'
Publikováno v:
Qualitative Theory of Dynamical Systems. 20
In the present article we study the periodic structure of a class of maps on the n-dimensional torus such that the eigenvalues of the induced map on the first homology are dilations of roots of unity. This family of maps shares some properties with t
Publikováno v:
Topology and its Applications. 235:428-444
We provide a general formula and give an explicit expression of the Lefschetz zeta function for any quasi-unipotent map on the space X = S l × ⋯ × ︸ n − times S l , with l > 1 . Among the quasi-unipotent maps are Morse–Smale diffeomorphisms
Publikováno v:
Topology and its Applications. 210:246-262
We provide a general formula and give an explicit expression of the Lefschetz zeta function for any quasi-unipotent map on the n -dimensional torus. The Lefschetz zeta function is used to characterize the minimal set of Lefschetz periods for Morse–
Autor:
Marcos J. González
Publikováno v:
Archiv der Mathematik. 105:425-433
We prove the following Cantor–Bernstein type theorem, which applies well to the class of symmetric sequence spaces studied earlier by Altshuler, Casazza, and Lin: Let X and Y be Banach spaces having symmetric bases (xn) and (yn), respectively. If e
Autor:
Marcos J. González, Carlos Finol
Publikováno v:
Journal of Mathematical Analysis and Applications. 426:380-391
We prove the following general result: Let ( x n ) be a boundedly complete symmetric basis for a Banach space X. Then, for every symmetric basic sequence in X, we have the following alternatives: (a) it is equivalent to a basic sequence generated by
Publikováno v:
Banach Center Publications. 102:71-88
For two Banach spaces X and Y , we write dim'(X) = dim'(Y ) if X embeds into Y and vice versa; then we say that X and Y have the same linear dimension. In this paper, we consider classes of Banach spaces with symmetric bases. We say that such a class
Autor:
Marek Wójtowicz, Marcos J. González
Publikováno v:
Funct. Approx. Comment. Math. 50, no. 2 (2014), 283-296
Let $X_a$ denote the order continuous part of a Banach lattice $X$, and let $\Gamma$ be an uncountable set. We extend Drewnowski's theorem on the comparison of linear dimensions between Banach spaces having uncountable symmetric bases to a~class of d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::256dc6faec212058e490b5847dee82d6
http://projecteuclid.org/euclid.facm/1403811845
http://projecteuclid.org/euclid.facm/1403811845
Autor:
Marcos J. González, Marek Wójtowicz
Publikováno v:
Banach Spaces and their Applications in Analysis: In Honor of Nigel Kalton's 60th Birthday
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5c60bc14e327c8a307ebced3d4e5d4c5
https://doi.org/10.1515/9783110918298.339
https://doi.org/10.1515/9783110918298.339
Autor:
Alain Togbé, Florian Luca, Kevin A. Broughan, V. Janitzio Mejía Huguet, Marcos J. González, Ryan H. Lewis
Publikováno v:
Integers. 11
We show that no Fibonacci number (larger than 1) divides the sum of its divisors.
Autor:
Saravanan, Praveen Kumar1 (AUTHOR) spjp2766@gmail.com, Bhalothia, Dinesh2 (AUTHOR) fortuner2014@gmail.com, Beniwal, Amisha2 (AUTHOR) amishabeni0607@gmail.com, Tsai, Cheng-Hung1 (AUTHOR) hank881029@gmail.com, Liu, Pin-Yu1 (AUTHOR) emilyliu1999@gmail.com, Chen, Tsan-Yao2 (AUTHOR) chencaeser@gmail.com, Ku, Hong-Ming3 (AUTHOR) hongming.ku@gmail.com, Chen, Po-Chun1 (AUTHOR) hongming.ku@gmail.com
Publikováno v:
Catalysts (2073-4344). Jul2024, Vol. 14 Issue 7, p410. 13p.