Zobrazeno 1 - 10
of 63
pro vyhledávání: '"Marco Valtorta"'
Autor:
Angelo Iannielli, Giovanni Stefano Ugolini, Chiara Cordiglieri, Simone Bido, Alicia Rubio, Gaia Colasante, Marco Valtorta, Tommaso Cabassi, Marco Rasponi, Vania Broccoli
Publikováno v:
Cell Reports, Vol 29, Iss 13, Pp 4646-4656.e4 (2019)
Summary: Stem cell-derived neurons are generally obtained in mass cultures that lack both spatial organization and any meaningful connectivity. We implement a microfluidic system for long-term culture of human neurons with patterned projections and s
Externí odkaz:
https://doaj.org/article/6c19f59060884387bf61e15b4feb78ac
Autor:
Chiara Pozzi, Marco Valtorta, Gabriella Tedeschi, Elena Galbusera, Valentina Pastori, Alessandra Bigi, Simona Nonnis, Eleonora Grassi, Paola Fusi
Publikováno v:
Neurobiology of Disease, Vol 30, Iss 2, Pp 190-200 (2008)
In this work we investigate subcellular localization and proteolytic cleavage of different forms of ataxin-3 (AT-3), the protein responsible for spinocerebellar ataxia type 3. Normal (AT-3Q6 and AT-3Q26) and pathological (AT-3Q72) ataxins-3, as well
Externí odkaz:
https://doaj.org/article/f06b136b193e47fab1a7ca8b35ce38a8
Autor:
Mohammad Ali Javidian, Marco Valtorta
Publikováno v:
International Journal of Approximate Reasoning. 136:66-85
We extend the decomposition approach for learning Bayesian networks (BNs) proposed by Xie et al. (2006) [54] to learning multivariate regression chain graphs (MVR CGs), which include BNs as a special case. The same advantages of this decomposition ap
Publikováno v:
Annals of Mathematics and Artificial Intelligence. 88:1003-1033
We propose a directed acyclic hypergraph framework for a probabilistic graphical model that we call Bayesian hypergraphs. The space of directed acyclic hypergraphs is much larger than the space of chain graphs. Hence Bayesian hypergraphs can model mu
Publikováno v:
International Journal of General Systems. 49:3-31
Data integrity is a key component of effective Bayesian network structure learning algorithms, namely PC algorithm, design and use. Given the role that integrity of data plays in these outcomes, th...
Publikováno v:
FLAIRS Conference
LWF chain graphs combine directed acyclic graphs and undirected graphs. We propose a PC-like algorithm, called PC4LWF, that finds the structure of chain graphs under the faithfulness assumption to resolve the problem of scalability of the proposed al
Publikováno v:
FLAIRS Conference
Multirobot systems are increasingly deployed in environments where they interact with humans. From the perspective of a robot, such interaction could be considered a disturbance that causes a well-planned trajectory to fail. Previous approaches that
We address the problem of finding a minimal separator in an Andersson-Madigan-Perlman chain graph (AMP CG), namely, finding a set Z of nodes that separates a given nonadjacent pair of nodes such that no proper subset of Z separates that pair. We anal
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::35f9fea224f8c59d847c146515c2025a
http://arxiv.org/abs/2002.10870
http://arxiv.org/abs/2002.10870
Publikováno v:
Lecture Notes in Computer Science
33th IFIP Annual Conference on Data and Applications Security and Privacy (DBSec)
33th IFIP Annual Conference on Data and Applications Security and Privacy (DBSec), Jul 2019, Charleston, SC, United States. pp.3-22, ⟨10.1007/978-3-030-22479-0_1⟩
Data and Applications Security and Privacy XXXIII ISBN: 9783030224783
DBSec
33th IFIP Annual Conference on Data and Applications Security and Privacy (DBSec)
33th IFIP Annual Conference on Data and Applications Security and Privacy (DBSec), Jul 2019, Charleston, SC, United States. pp.3-22, ⟨10.1007/978-3-030-22479-0_1⟩
Data and Applications Security and Privacy XXXIII ISBN: 9783030224783
DBSec
Part 1: Attacks; International audience; In this research, we study data poisoning attacks against Bayesian network structure learning algorithms. We propose to use the distance between Bayesian network models and the value of data conflict to detect
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4f6a070ee75b86006826bca7f5252659
https://hal.inria.fr/hal-02384585/document
https://hal.inria.fr/hal-02384585/document
Autor:
Angel Raya, Carles Calatayud, Giulia Carola, Senda Jiménez-Delgado, Antonella Consiglio, Jordi Soriano-Fradera, Javier García-Sancho, Marco Valtorta, Mònica Díaz, Irene Fernandez-Carasa, Graziella Cappelletti
Publikováno v:
Recercat. Dipósit de la Recerca de Catalunya
instname
SCIENTIFIC REPORTS
r-FSJD. Repositorio Institucional de Producción Científica de la Fundació Sant Joan de Déu
Scientific Reports, Vol 9, Iss 1, Pp 1-9 (2019)
Scientific Reports
Digital.CSIC. Repositorio Institucional del CSIC
r-FSJD: Repositorio Institucional de Producción Científica de la Fundació Sant Joan de Déu
Fundació Sant Joan de Déu
Dipòsit Digital de la UB
Universidad de Barcelona
instname
SCIENTIFIC REPORTS
r-FSJD. Repositorio Institucional de Producción Científica de la Fundació Sant Joan de Déu
Scientific Reports, Vol 9, Iss 1, Pp 1-9 (2019)
Scientific Reports
Digital.CSIC. Repositorio Institucional del CSIC
r-FSJD: Repositorio Institucional de Producción Científica de la Fundació Sant Joan de Déu
Fundació Sant Joan de Déu
Dipòsit Digital de la UB
Universidad de Barcelona
Patient-specific induced pluripotent stem cells (iPSCs) are a powerful tool to investigate the molecular mechanisms underlying Parkinson’s disease (PD), and might provide novel platforms for systematic drug screening. Several strategies have been d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::992f63d0cdecbaa10612ab5810a3909b
http://hdl.handle.net/2445/148117
http://hdl.handle.net/2445/148117